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Problem 8.1.3
X1 � X2 ����� Xn are independent uniform random variables with mean value µX

� 7 and σ2
X
� 3

(a) Since X1 is a uniform random variable, it must have a uniform PDF over an interval
�
a � b� . From

Appendix A, we can look up that µX
��� a � b 	�
 2 and that Var

�
X � ��� b � a 	 2 
 12. Hence, given

the mean and variance, we obtain the following equations for a and b.

� b � a 	 2 
 12 � 3 � a � b 	�
 2 � 7

Solving these equations yields a � 4 and b � 10 from which we can state the distribution of
X .

fX
� x 	 � 1 
 6 4 
 x 
 10

0 otherwise

(b) From Theorem 8.1, we know that

Var
�
M16

� X 	�� � Var
�
X �

16
� 3

16

(c)

P
�
X1 � 9� ��� ∞

9
fX1

� x 	 dx ��� 10

9

� 1 
 6 	 dx � 1 
 6
(d) The variance of M16

� X 	 is much less than Var
�
X1 � . Hence, the PDF of M16

� X 	 should be much
more concentrated about E

�
X � than the PDF of X1. Thus we should expect P

�
M16

� X 	�� 9� to
be much less than P

�
X1 � 9� .

P
�
M16

� X 	�� 9� � 1 � P
�
M16

� X 	�
 9� � 1 � P
� � X1 ��������� X16 	�
 144�

By a Central Limit Theorem approximation,

P
�
M16

� X 	�� 9��� 1 � Φ
144 � 16µX�

16σX

� 1 � Φ � 2 � 66 	 � 0 � 0039

As we predicted, P
�
M16

� X 	�� 9��� P
�
X1 � 9� .
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Problem 8.2.4
The N

�
0 � 1� random variable Z has MGF φZ

� s 	 � es2 � 2. Hence the Chernoff bound for Z is

P
�
Z � c��
 min

s � 0
e  sces2 � 2 � min

s � 0
es2 � 2  sc

We can minimize es2 � 2  sc by minimizing the exponent s2 
 2 � sc. By setting

d
ds

s2 
 2 � sc � 2s � c � 0

we obtain s � c. At s � c, the upper bound is P
�
Z � c�!
 e  c2 � 2. The table below compares this upper

bound to the true probability. Note that for c � 1 � 2 we use Table 4.1 and the fact that Q � c 	 � 1 � Φ � c 	 .
c � 1 c � 2 c � 3 c � 4 c � 5

Chernoff bound 0 � 606 0 � 135 0 � 011 3 � 35 " 10  4 3 � 73 " 10  6

Q � c 	 0 � 1587 0 � 0228 0 � 0013 3 � 17 " 10  5 2 � 87 " 10  7

We see that in this caase, the Chernoff bound typically overestimates the true probability by roughly
a factor of 10.

Problem 8.2.5
For an N

�
µ � σ2� random variable X , we can write

P
�
X � c� � P

� � X � µ 	�
 σ � � c � µ 	�
 σ� � P
�
Z � � c � µ 	�
 σ�

Since Z is N
�
0 � 1� , we can apply the result of Problem 8.2.4 with c replaced by � c � µ 	�
 σ. This yields

P
�
X � c� � P

�
Z � � c � µ 	�
 σ��
 e  $# c  µ % 2 � 2σ2

Problem 8.2.7
process of rate λ � 1 
 2 trains/minute, N, the number of trains in the first 30 minutes, is a Poisson

random variable with parameter α � 30λ � 15. The PMF of N is

PN
� n 	 � 15ne  15 
 n! n � 0 � 1 � 2 � �����

0 otherwise

Since X is the arrival time of the third train, X � 30 if and only if there were N 
 2 trains in the first
30 minutes. That is,

P
�
X � 30� � P

�
N 
 2� � PN

� 0 	&� PN
� 1 	&� PN

� 2 	�'� 1 � 15 � 152 
 2! 	 e  15

� 241e  15 � 7 � 37 " 10  5

In Quiz 8.2, we found the following bounds:

P
�
X � 30��
 E

�
X �

30
� 0 � 20 Markov

P
�
X � 30��
 0 � 021 Chebyshev

P
�
X � 30��
 7 � 68 " 10  4

Comparing the exact probability to the bounds, we see that the Markov inequaland Chebyshev in-
equalities were extremely weak. On the other hand, the Chernoff bound worked reasonably well.
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Problem 8.2.8
Let Wn

� X1 �(�����)� Xn. Since Mn
� X 	 � Wn 
 n, we can write

P
�
Mn

� X 	 � c� � P
�
Wn � nc�

Since φWn
� s 	 �*� φX

� s 	+	 n, applying the Chernoff bound to Wn yields

P
�
Wn � nc��
 min

s � 0
e  sncφWn

� s 	 � min
s � 0

e  scφX
� s 	 n

For y � 0, yn is a nondecreasing function of y. This implies that the value of s that minimizes e  scφX
� s 	

also minimizes � e  scφX
� s 	+	 n. Hence

P
�
Mn

� X 	 � c� � P
�
Wn � nc��
 min

s � 0
e  scφX

� s 	 n

Problem 8.3.3
Both questions can be answered using the following equation from Example 8.8:

P
�-,
Rn � P

�
A� , � c��
 P

�
A� � 1 � P

�
A�.	

nc2

The unusual part of this problem is that we are given the true value of P
�
A� . Since P

�
A� � 0 � 01, we

can write

P
�-,
Rn � P

�
A� , � c��
 0 � 0099

nc2

(a) In this part, we meet the requirement by choosing c � 0 � 001 yielding

P
�-,
Rn � P

�
A� , � 0 � 001��
 9900

n

Thus to have confidence level 0 � 01, we require that 9900 
 n 
 0 � 01. This requires n � 990 � 000.

(b) In this case, we meet the requirement by choosing c � 10  3P
�
A� � 10  5. This implies

P
�-,
Rn � P

�
A� , � c��
 P

�
A� � 1 � P

�
A�.	

nc2
� 0 � 0099

n10  10
� 9 � 9 " 107

n

The confidence level 0 � 01 is met if 9 � 9 " 107 
 n � 0 � 01 or n � 9 � 9 " 109.

Problem 8.4.2

(a) From Theorem 7.2, we have

Var
�
X1 �������)� Xn� � n

∑
i / 1

Var
�
Xi �0� 2

n  1

∑
i / 1

n

∑
j / i 1 1

Cov Xi � X j
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Note that Var
�
Xi � � σ2 and for j � i, σXi 2 X j

� σ2a j  i. This implies

Var
�
X1 �������3� Xn� � nσ2 � 2σ2

n  1

∑
i / 1

n

∑
j / i 1 1

a j  i

� nσ2 � 2σ2
n  1

∑
i / 1

a � a2 �(�����)� an  i

� nσ2 � 2aσ2

1 � a

n  1

∑
i / 1

� 1 � an  i 	
� nσ2 � 2aσ2

1 � a
� n � 1 	4� 2a

1 � a
a � a2 �������3� an  1

� n � 1 � a 	 σ2

1 � a
� 2aσ2

1 � a
� 2σ2 a

1 � a

2 � 1 � an  1 	
Since a 
 � 1 � a 	 and 1 � an  1 are both nonnegative,

Var
�
X1 �������)� Xn��
 nσ2 1 � a

1 � a

(b) Since the expected value of a sum equals the sum of the expected values,

E
�
M � X1 � ����� � Xn 	5� � E

�
X1�0�������3� E

�
Xn�

n
� µ

The variance of M � X1 � ����� � Xn 	 is

Var
�
M � X1 � ����� � Xn 	5� � Var

�
X1 �������)� Xn�

n2 
 σ2 � 1 � a 	
n � 1 � a 	

Applying the Chebyshev inequality to M � X1 � ����� � Xn 	 yields

P
�6,
M � X1 � ����� � Xn 	&� µ

, � c��
 Var
�
M � X1 � ����� � Xn 	5�

c2 
 σ2 � 1 � a 	
n � 1 � a 	 c2

(c) Taking the limit as n approaches infinity of the bound derived in part (b) yields

lim
n 7 ∞

P
�-,
M � X1 � ����� � Xn 	&� µ

, � c��
 lim
n 7 ∞

σ2 � 1 � a 	
n � 1 � a 	 c2

� 0

Thus

lim
n 7 ∞

P
�-,
M � X1 � ����� � Xn 	4� µ

, � c� � 0
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Problem 8.4.3
The solution to this problem generalizes the solution of Problem 8.4.1. As a preliminary step, first
we find the CDF of Yn

� min 8 X1 � ����� � Xn 9 .

P
�
Yn 
 y� � 1 � P

�
Yn � y� � 1 � P

�
X1 � y� X2 � y� ����� � Xn � y�

Since X1 � X2 � ����� is an iid sequence,

P
�
X1 � y� X2 � y� ����� � Xn � y� � P

�
X1 � y�:����� P �Xn � y� �*� 1 � FX

� y 	�	 n
This implies

P
�
Yn 
 y� � 1 � � 1 � FX

� y 	+	 n
Now we use Theorem 8.7 to prove w.p.1 convergence. Since FXi

� 0 	 � 0, we know that each Xi and
thus each Yi is nonnegative. This implies

Sn
� ε 	 � 8 ,Yn

,<;
ε 9 � 8 Yn

;
ε 9

Since Yn
� min 8 X1 � ����� � Xn 9 , we observe that Yn

� min 8 Xn � Yn  1 9 . Hence Yn 
 Yn  1 for all n so that
if Yn 
 ε, then Yk 
 ε for all k � n. Hence,

P
� =

k � nSk
� ε 	>� � P

�
Yn 
 ε � Yn 1 1 
 ε � ����� � � P

�
Yn 
 ε� � 1 � � 1 � FX

� ε 	�	 n
Thus,

lim
n 7 ∞

P
� =

k � nSk
� ε 	>� � lim

n 7 ∞
1 � � 1 � FX

� ε 	+	 n � 1

Note that if there were an ε0 such that FX
� ε0 	 � 0, then

lim
n 7 ∞

1 � � 1 � FX
� ε0 	�	 n � lim

n 7 ∞
1 � � 1 � 0 	 n � 0

and the Yn sequence would not converge to zero.

Problem 8.4.4
For n � 1 � 2 � ����� , let Wn

�?� X3n  2 � X3n  1 � X3n 	�
 3. That is, W1
�?� X1 � X2 � X3 	�
 3, W2

��� X4 �
X5 � X6 	�
 3 and so on. Note that W1 � W2 � ����� is an iid random sequence. In addition, since E

�
X3n � � 0

for all n,

E
�
Wn � � E

�
X3n  2 �@� E

�
X3n  1 �@� E

�
X3n �

3
� 1 
 3

By the construction of Wn, we can write

Y3n
� X1 ��������� X3n

3n
� W1 �������)� Wn

n

Since W1 � W2 � ����� is an iid sequence with E
�
W � � 1 
 3, the strong law of large numbers says that

lim
k 7 ∞

Y3k
� 1 
 3 w.p. 1
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At this point it may seem that we are done. However, we have not quite shown that the sequence Yn

converges w.p. 1. Given Y3k, we need to find upper and lower bounds to Yj. When 3k 
 j 
 3k � 2,

Yj
� X1 ��������� X3k

j
� X3k 1 1 �������3� X j

j

Since X3k 1 1 �(�����)� X j � 0,

Yj � X1 �(�����)� X3k

j
� 3k

j
Y3k

� 1 � j � 3k
j

Y3k

Since 0 
 j � 3k 
 2 and since Y3k 
 1, we see that

Yj � Y3k � 2
j
Y3k � Y3k � 2

j

In addition, since j 
 3k � 2,

X3k 1 1 �������3� X j 
 X3k 1 1 � X3k 1 2 
 2

This implies

Yj 
 3k
j

X1 �������3� X3k

3k
� 2

j

 Y3k � 2

j

Combining these results, we have for 3k 
 j 
 3k � 2,

Y3k � 2 
 j 
 Yj 
 Y3k � 2 
 j

We can rewrite this result using the floor function as

Y3 A j� 3B � 2 
 j 
 Yj 
 Y3 A j� 3B � 2 
 j

Taking limits, we obtain with probability 1 that

lim
j 7 ∞

Y3 A j� 3B � 2 
 j 
 lim
j 7 ∞

Yj 
 lim
j 7 ∞

Y3 A j� 3B � 2 
 j

which implies

1 
 3 
 lim
j 7 ∞

Yj 
 1 
 3 w.p. 1
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