Probability and Stochastic Processes:
A Friendly Introduction for Electrical and Computer Engineers
Roy D. Yates and David J. Goodman

Problem Solutions: Yatesand Goodman,8.1.38.2.48.2.58.2.78.2.88.3.38.4.28.4.3and8.4.4

Problem 8.1.3
X1,X2... Xy areindependent uniform random variables with mean value uyx = 7 and of( =3

(8 SinceX; isauniformrandomyvariable, it must haveauniform PDF over aninterval [a,b]. From
Appendix A, we can look up that pix = (a+b)/2 and that Var [X] = (b—a)?/12. Hence, given
the mean and variance, we obtain the following equations for a and b.

(b—a)?/12=3  (a+b)/2=7

Solving these equations yields a = 4 and b = 10 from which we can state the distribution of
X.

[ 1/6 4<x<10
fx (%) = { 0 otherwise

(b) From Theorem 8.1, we know that

(©

PX, > 9] /g ", () dx = /g P 1/6)dx—1/6

(d) Thevariance of M1g(X) ismuchlessthan Var [X;]. Hence, the PDF of M1¢(X) should be much
more concentrated about E[X] than the PDF of X;. Thus we should expect P[M5(X) > 9] to
be much lessthan P[X; > 9].

P[M3g(X) > 9] = 1—P[Myg(X) <9 = 1—P[(Xg+--- + Xg6) < 144]
By a Central Limit Theorem approximation,

144 — 16ux
V160x

Aswe predicted, P[M1g(X) > 9] < P[X1 > 9.

P[Mig(X) > 9]~ 1—® ( ) = 1— ®(2.66) = 0.0039



Problem 8.2.4
The N[0, 1] random variable Z has MGF @ (s) = € /2. Hence the Chernoff bound for Z is

P[Z > d < mine %€ /2 = mines /2 =
s>0 s>0

We can minimize e%*/2-% by minimizing the exponent /2 — sc. By setting
d
T ($/2—st) =2s—¢c=0

weobtains= c. Ats=c, theupper boundisP[Z > ¢] < e ¢/2, Thetablebelow comparesthisupper
bound to thetrue probability. Notethat for c= 1,2 weuse Table4.1 and thefact that Q(c) = 1— ®(c).

c=1 c=2 ¢=3 c¢=4 c=5
Chernoff bound | 0.606 0.135 0.011 3.35x10% 3.73x10°°
Q(c) 0.1587 0.0228 0.0013 3.17x10™° 2.87x10° '

We seethat in this caase, the Chernoff bound typically overestimates the true probability by roughly
afactor of 10.

Problem 8.2.5
For an N[y, 2] random variable X, we can write

PIX>¢c] =P[(X—n)/o > (c—n)/0] =P[Z= (c—p)/0]
Since ZisN|0, 1], we can apply theresult of Problem 8.2.4 with c replaced by (c— ) /0. Thisyields
PIX 2 ¢] = P[Z > (c—p)/0] < g™/

Problem 8.2.7
processof rate A = 1/2 traingminute, N, the number of trainsin thefirst 30 minutes, isaPoisson
random variable with parameter a = 30\ = 15. The PMF of N is

15" /nl n=0,1,2,...
Pv(n) = { 0 otherwise

Since X isthe arrival time of thethird train, X > 30 if and only if therewere N < 2 trainsin thefirst
30 minutes. That is,

PX>30]=P[N<2 =R (0) +Pu(1)+P(2)
= (1+15+15%/21)e
=241e 5 =7.37x107°

In Quiz 8.2, we found the following bounds:

E|X
P[X >30] < % =0.20 Markov

P[X >30,<0.021  Chebyshev
P[X >30] <7.68x10 4

Comparing the exact probability to the bounds, we see that the Markov inequaland Chebyshev in-
equalities were extremely weak. On the other hand, the Chernoff bound worked reasonably well.
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Problem 8.2.8
Let Wh = X3+ - - + Xn. Since My (X) =W, /n, we can write

P[Mn(X) = ¢ = P > nc]

Since @, (s) = (¢ (s))", applying the Chernoff bound to W, yields
n

PW, > nc] < rg(r)m e @y, (s) = min (e Fgx(s))

s>0

Fory > 0, y" isanondecreasing function of y. Thisimpliesthat thevalueof sthat minimizese™% gy (s)
also minimizes (e g (s))". Hence

s>0

P[Mn(X) = ¢ = PMh = nc] < <m'n e Tox(s )>n

Problem 8.3.3
Both questions can be answered using the following equation from Example 8.8:
PIA/(1—PIA))
> L
PlIRy—PIAl| > ¢ < =

The unusual part of this problem isthat we are given the true value of P[A]. Since P[A] = 0.01, we
can write

PRy PIA)| > ¢ < 2000

(a) Inthispart, we meet the requirement by choosing ¢ = 0.001 yielding

P[|R,— P[A]| > 0.001] < @3

Thusto have confidencelevel 0.01, werequirethat 9900/n < 0.01. Thisrequiresn > 990, 000.
(b) In this case, we meet the requirement by choosing ¢ = 10~3P[A] = 10~°. Thisimplies

PIA(1—P[A]) 00099 9.9x107
nc2 - nlo—10 n

PlIRa = P[A] > ¢] <
The confidence level 0.01 ismet if 9.9 x 107 /n=0.01 or n = 9.9 x 10°.

Problem 8.4.2

(@) From Theorem 7.2, we have

n-1 n

Var (X1 +---+Xp] = ZVar +22 z Cov [Xi, X|]
i=1j=1+1



Note that Var [X;] = 0% and for j > i, o x, = 0%al . Thisimplies

n-1 n

Var[xl+---+xn]:ncr2+2cr221 > al™!
i=1j=1+1

= n02+20221(a+a2+---+a”i)

i
23.0'2 n—-1

2 n—i
=n 1-a
Py )
2a0? 2a
2 2 n—-1
=no n—-1)— ata +---+a
+1 (Y- (@+a++d)

~ (n(1+a)c?\ 2ac® _ L/ a \? -
_< 1-a >_1—a_20 1—a) 3-8
Sincea/(1—a) and 1—a"* are both nonnegative,

1
Var [Xq + - -+ + Xq] < no? <1%Z>

(b) Since the expected value of a sum equals the sum of the expected values,

EMOG..... )] = T E

Thevariance of M(Xy, ..., X,) is

_ VarXat X 0?(1+a)

Var [M(Xq, ... , Xn)] 7 = n(1—a)

Applying the Chebyshev inequality to M(Xy, ... ,Xq) yields

Var [M(Xy,... . %)l _ 0%(1+a)
c? ~n(l-a)c?

P[IM(Xq,..., %) —H[ >¢] <
(c) Taking the limit as n approaches infinity of the bound derived in part (b) yields

2
lim M (X, Xo) 1| > ¢] < lim o(1+a) _

n—e N(1— a)c?
Thus

limP[[M(Xy,...,Xn) — M| >¢]=0

n—oo



Problem 8.4.3
The solution to this problem generalizes the solution of Problem 8.4.1. Asapreliminary step, first
we find the CDF of Y, = min{Xy,... , Xy}

PlYa <y =1-P¥a >y =1-PX >y X >y, . X > ]
Since X1, Xy, ... isaniid sequence,
P[X1 >y, Xo >y, Xa >y =P[Xy > Y]+ P[Xa >y] = (1-Fx(y))"
Thisimplies
PYp <y =1—(1-Fx(y))"

Now we use Theorem 8.7 to prove w.p.1 convergence. Since Fx, (0) = 0, we know that each X; and
thus eachY; is nonnegative. Thisimplies

Sh(e) = {[¥nl <&} = {¥n <&}

SinceY, =min{Xy,...,X,}, weobservethat Y, = min{X,,Y,_1}. HenceY, <Y;,_; for al n so that
if Y, <€, thenYy <eforal k> n. Hence,

PNienS()] = PYa < &Yay1 <&,..] = PYa <& = 1— (1—Fx (g))"
Thus,
1im P[NlenS(e)] = lim1— (1 Fx (€))" = 1
Note that if there were an g; such that Fx (o) = O, then

liml—(1—-Fx(g))"= ALngol— (1-0)"=0

n—oo

and the Y;; sequence would not converge to zero.

Problem 8.4.4
Forn=12,...,leeW, = (X3n72+X3n,1+X3n)/3. Thatis, W, = (X1+XZ+X3)/3,VV2 = (X4+
X5+ Xg)/3 and so on. Note that Wy, Wb, . .. isan iid random sequence. In addition, since E[X3,] =0
for al n,
E[Xan—2] + E[Xan_1] + E[Xan]

EW,] = 2 =1/3

By the construction of W, we can write

Xpt -+ Xan Wit +Wh
Yan = 3n - n

SinceWp, W5, ... isaniid sequence with E|W] = 1/3, the strong law of large numbers says that

Ilim Y =1/3 w.p. 1
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At this point it may seem that we are done. However, we have not quite shown that the sequence Y,
converges w.p. 1. Given Ya, we need to find upper and lower boundsto Y;. When 3k < j < 3k+2,

_ Xt A Xa, Xt o4 X
] ]

Y]
Since Xz 1+ -+ +Xj >0,

Y > M — %(Y3k— (1—$<>Y3k

Since0< j—3k< 2andsince Yz < 1, we see that
2 2
Yj > Y — TY3k ZY3|<—T

In addition, since j < 3k+ 2,

Xap1+ -+ Xj < Xakyr + X2 < 2
Thisimplies
kXy+ -+ Xk 2 2

P> 3K j =T

Combining these results, we havefor 3k < j < 3k—+ 2,
Yac—2/j <VYj <VYa+2/]
We can rewrite this result using the floor function as
Yaii/a) —2/1 <Yj < Yaj/3 +2/]
Taking limits, we obtain with probability 1 that
lim a1/ —-2/j< lim¥; < limYsj/3 +2/]
which implies

1/3<1limY; <1/3 w.p. 1
j—o0



