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Problem 6.2.4

The statement is false. As a counterexample, consider the rectified cosine waveform X(t) =
R|cos2mft| of Example 6.8. Whent = 11/2, then cos2rtft = 0 so that X(11/2) = 0. Hence X(11/2)
has PDF

fx(ry2) (X) = 8(x)
That is, X(11/2) is adiscrete random variable.

Problem 6.3.4

Sincethe problem statesthat the pulseisdelayed, wewill assumeT > 0. Thisproblemisdifficult
because the answer will depend ont. In particular, for t < 0, X(t) = 0 and fy) (X) = &(x). Things
are more complicated whent > 0. For x < 0, P[X(t) > x] = 1. For x> 1, P[X(t) > x] = 0. Lastly,
for0<x<1,

PX(t) >x=PleDut-T) > x} =Plt+Inx< T <t] = Fr (t) — Fr (t+Inx)

Note that condition T <t is needed to make sure that the pulse doesn’t arrive after timet. The other
condition T >t + Inx ensuresthat the pulse didn’t arrrive too early and already decay too much. We
can express these facts in terms of the CDF of X(t).

0 x<0
Frxiy X)) =1-PX({t) >x =1 1+Fr(t+Inx)—Fr () 0<x<1
1 x>1

We can take the derivative of the CDF to find the PDF. However, we need to keep in mind that the
CDF has ajump discontinuity at x = 0. In particular, since In0 = —oo,

Fxt) (0) =1+Fr(—o) —Fr(t) =1-F (1)
Hence, when we take a derivative, we will see animpulse at x = 0. The PDF of X(t) is

b () { ([)1— Fr ()]8(x) + fr (t+Inx) /x 25 e;(v; ;

Problem 6.4.2

independent Gaussian random variables. Hence, each W, must have the same PDF. That is, the
W, areidentically distributed. However, sinceW, 1 and W, both use X,, ; in their averaging, W}, 1
and W, are dependent. We can verify this observation by cal culating the covariance of W, _; and W,.
First, we observe that for al n,

EMWh] = (E[X] +E[X-1])/2 =30
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Next, we observe that W,_1 and W}, have covariance
Cov Wh_1, W] = EM, 9 Wh] — EWLIEW, 4]
= 0%+ X 2) (X + X )] 900
We observe that for n £ m, E[X,Xm| = E[Xp] E[Xm] = 900 while
E[XZ] = Var[Xa] + (E[X,])? = 916

Thus,
900+ 916+ 900+ 900
Cov [Wh_1,Wh] = ha Z + —900=4
Since Cov W1, Wh] # 0, W, and W,,_; must be dependent.
Problem 6.4.3

successes k— 1 and k is exactly y > 0 iff after successk — 1, there are y failures followed by a
success. Since the Bernoulli trials are independent, the probability of thisevent is (1 — p)Yp. The
complete PMF of Y is

Rrey) = { 0 otherwise

Sincethisargument isvalid for all k including k = 1, we can concludethat Y1,Y>,... areidenticaly
distributed. Moreover, since the trials are independent, the failures between successes k — 1 and k
and the number of failures between successes k' — 1 and k' are independent. Hence, Y1, Yo, ... isan
iid sequence.

Problem 6.5.6
The random variablesK and J have PMFs
ale @ . phe B
. . =012... P k=012 ...
P = J' J o k = k! Ei A
3(1) { 0 otherwise R (k) { 0 otherwise

For n > 0, we can find the PMF of N = J4 K via

PIN=n]= g P[J=n—k K=K

k=—o0

Since J and K are independent, non-negative random variables,

PIN=1= 5 B0 )Rk

n (Xn_ke_a Bke—B
& (n—K)! K

— (a+B)rf]‘!e(u+B) kik!(nni . <aiB)nk<a—EB>k
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The marked sum above equals 1 because it is the sum of a binomial PMF over all possible values.
The PMF of N isthe Poisson PMF

Pu(n) = 7(G+B):]? P n=0,12,...
0 otherwise

Problem 6.5.7
(@ For X; = —InU;, we can write
P[X; >x =P[—InU; >X = P[InU; < —X| =P[U; < e
Whenx < 0,e * > 1sothat PlU;<e ¥ =1 Whenx >0, wehave0 < e * <1, implying
P[U; < e*] = e *. Combining these facts, we have

1 x<0

Px>x={ o XSo

This permits us to show that the CDF of X; is

Bdmzl—ﬂm>ﬂ={2_ex§§8

We see that X; has an exponential CDF with mean 1.
(b) Notethat N = niff

n ; n+1
U>e > Ui
[[U=e= 1"
By taking the logarithm of both inequalities, we seethat N = n iff
n+1

n
ZlInUi > —t> lenui
i= i=

Next, wemultiply throughby —1 andrecall that X; = — InU; isan exponential random variable.
ThisyieldsN = n iff

Sx<t<y X

Now we recall that a Poisson process N(t) of rate 1 has independent exponential interarrival
times Xy, Xo,.... Thatis, theith arrival occursat time zijzl X;. Moreover, N(t) = niff thefirst
narrivals occur by timet but arrival n+ 1 occurs after timet. Since the random variable N(t)
has a Poisson distribution with mean t, we can write

n+1

ﬂ§m<t<zxizmmw=m=
i=1 i=1

thet
n!




Problem 6.6.3

= Xn— Xn_1 = X(n) — X(n—1) is a Gaussian random variable with mean zero and variance a.
Since thisfact is true for al n, we can conclude that Y1, Y, ... areidentically distributed. By Defi-
nition 6.11 for Brownian motion, Y,, = X(n) — X(n— 1) isindependent of X(m) forany m<n-—1.
HenceY,, isindependent of Yy, = X(m) — X(m— 1) for any m < n— 1. Equivaently, Y1,Y>,... isa
seguence of independent random variables.
Problem 6.7.1

The discrete time autocovariance function is

Cx[m, K| = E[(Xm— Hx) (Xmk — Mx)]
for k = 0, Cx[m, 0] = Var [Xm] = 0%. For k # 0, Xm and X, are independent so that
Cx[m K = E[(Xm — Mx)|E[(Xmik — Hx)] =0
Thus the autocovariance of X is

0% k=0
CX[m:k]:{ OX k#0

Problem 6.7.6
By repeated application of the recursion C, = C,,_1/2+ 4X,, we obtain
Co= C”—2 +4[—x” ! +Xn}
B Cn—3 Xn2  Xn1
=3 +4[ 2 T3 +Xn:|
Co X1 X2
—§+4{2n_1+2n 5+ +Xn}
n

_ X
Toon +4i; on—i

(@) SinceCy, X1, Xy,... dl have zero mean,

ECo  , < EX]

i=

=|(2+432) (e Bt )|

Since Cy, X1, Xz, ... areindependent (and zero mean), E[CoX;] = 0. Thisimplies

E C2 m mtk XiX|
Ce[m. K = 22[m+l}< +16 Zl Z %

(b) Theautocovarianceis

Ceclmk =




Fori# j,E [Xi Xj} = 0 sothat only thei = j terms make any contribution to the double sum.
However, at this point, we must consider the casesk > 0 and k < O separately. Since each X;
has variance 1, the autocovariancefor k > 0is

K 1 i 1
Cc[m’ } - 22mHk + 16_21 22mHk—2i
1=

1 160 -
- W + ? izl(l/4)

_ 1 161 (/4"
Tk Tk T3/

For k < 0, we can write

E[C]] | 2" E[XX|]
CC[m: k] = 22mk + 16i; ; om—ipmtk—j
mH-k 1
- 116
22m+k i; 22mHk—2i

1 16 mH-k
~ Pk ok 2

1 +531—(1/4)m+'<
~gemik T2k 3/4

(1/4)m+k—i

A general expressionthat’svalid for all mand k is

1 161 (1/4mnmmil)
Celm K = Zomx * 51 3/4

(c) SinceE[Ci] = Ofor dll i, our model has a mean daily temperature of zero degrees Celsius for
the entire year. Thisis not areasonable model for ayear.

(d) Forthemonth of January, a mean temperature of zero degrees Celsius seems quite reasonable.
we can calculate the variance of C, by evaluating the covariance at n = m. Thisyields

1 164(4"—1)

Vale =7 3

Note that the varianceis upper bounded by
Var|C,| < 64/3

Hence the daily temperature has a standard deviation of 8/+/3 ~ 4.6 degrees. Without actual
evidence of daily temperaturesin January, this model is more difficult to discredit.



Problem 6.7.8

process covarianceisamost identical to the derivation of the Brownian motion autocovariance since
both rely on the use of independent increments. From the definition of the Poisson process, we know
that pn(t) = At. When s < t, we can write

Cn(sit) = E[N(SIN(t)] — (As)(At)
= E[N(9)[(N(t) — N(s)) + N(s)]] - A°t
= E[N(s)[N(t) — N(s)]] + E[N*(s)] — A\t

By the definition of the Poisson process, N(s) and N(t) — N(s) areindependent for s< t. Thisimplies
EIN(S)[N(t) —N(s)]] = E[N(S)JE[N(t) — N(s)] = As(At —As)
Note that since N(s) is a Poisson random variable, Var [N(s)] = As. Hence
E[N?(s)] = Var[N(s)] + (E[N(s)]* = As+ (As)?
Therefore, for s< t,
Cn(st) = As(At — As) +As+ (As)? — A%t = As

If s> t, then we can interchange the labels s and t in the above steps to show Cy(s,t) = At. For
arbitrary s and t, we can combine these factsto write

Cn(sit) =Amin(s;t)
Problem 6.8.5

Sinceg(-) isan unspecified function, we will work with thejoint CDF of Y (t; +1),...,Y(ta +T).
To show Y(t) is astationary process, we will show that for all t,

Nt Yttt V155 ¥n) = R, vitn) (Y155 Yn)

By taking partial derivativeswith respecttoy, ... ,Yn, it should be apparent that thisimpliesthat the
joint PDF fy ¢, 1), .. y(ty+1) (Y1, --- »Yn) Will not depend on t. To proceed, we write

FY(tl-H),... Y (th+T) (yla . aYn) = P[ (tl +T) <Vi,.. (tn +T) < Yn]

=Plg(X(t1+1)) <y1,...,0(X(ta +T)) < ¥n
Ac

In principle, we can calculate P[A;] by integrating fy ¢, 1), . x(t,+1) (X1, - ,Xn) Over the region cor-
responding to event A;. Since X(t) is a stationary process,
Xt Xt K-+ %) = Fxy), . x(t) (Xas - %)
Thisimplies P[A;] does not depend on 1. In particular,
R ty+1),... Y(tart) Y15+ -+ »Yn) = P[Aq]

=P[g(X(t2)) < y1.--- . 0(X(tn)) < Vn]
=Ry, ) Y1+ 5 Yn)



Problem 6.9.6

with thisproblem since X, isnot defined for n < 0. ThisimpliesCx[n, k] isnot defined for k < —n
and thusCx [n, k] cannot be completely independent of k. Whennislarge, corresponding to aprocess
that has been running for along time, thisis atechnical issue, and not a practical concern. Instead,
wewill find a2 such that Cx [n, k] = Cx [K] for all n and k for which the covariance function is defined.
To do so, we need to express X, interms of Zy, 7y, ... ,Z,,. We do thisin the following way:

Xn=CXn_1+2Zn1
=c[cXn2+Zn 2] +2Zn 1
= P[Xy_3+Zn_3| +CZn 2+ Zn 1

="+ " 1204+ %2+ 4+ 20
n—-1
— CnXO‘I' Cnflfiz_
5%
Since E[Z;] = 0, the mean function of the X, processis
n-1 )
E[Xn] = C"E[Xo] + Z)c”—l—'E[zi] = E[Xg]
=

Thus, for X, to be azero mean process, we require that E[Xo] = 0. The autocorrelation function can
be written as

n—1 n+k—1
Rx[n.K = E[XaXn k] = E[(CnXO‘i‘_ZanliZi) (c”+k><o+ 2} cn+kliz,->
i= =

Although it was unstated in the problem, we will assumethat Xg isindependent of Zy, Z,,... sothat
E[XoZ] = 0. Since E[Z] = 0and E[ZZ;] =0 for i # j, most of the cross terms will drop out. For
k > 0, autocorrelation simplifies to

n

1—c?

n—-1 )
RX [n, k] — 2n+kvar [XO] + Z) C2(n*l)+k*2l)6.2 — C2n+kvar [XO] + 62Ck
i=

Since E[Xn] = 0, Var [Xg] = Rx[n,0] = a2 and we can write for k > 0,

+C2n+k (0.2_ 0* )

RX[nv k} = 62

1-c? 1—¢c?



For k < 0, we have

n-1 ) n+k—1 )
Rx[n, k} —E [(Cnxo+ %Cn]'lZi) <Cn+kxo+ % Cn-l—kl]z].)]
i= j=

n+k—1 )
— C2n+kvar [XO] + C—k % C2(n+k—l—])6-2
j:

_ kgt y ekt
1-¢?

% &2
C—k + C2n+k <02 o >

T 1-e2 1-¢?

We see that Ry [n, k| = a?c/ by choosing
&% = (1—?)0?

Problem 6.9.7
We can recusively solvefor Y, asfollows.

Yn=aXp+aY¥y1
=aXn+ a[axn—l + aYn—Z}
= aXp+ a?Xn_1 + a%[aX_o +a¥y_3]
By continuing the same procedure, we can conclude that

n

Yo = Z}a"“xm i +a™o
J:

Since Yy = 0, the substitutioni = n— j yields

n

_ n-i+ly.
Now we can calculate the mean
it C it
ElY,]=E [i%a Xi] = i;a E[X]=0
To calculate the autocorrelation Ry[m, k|, we consider first the case when k > 0.

m m m+k

m+k
C m, kl =E amfi‘H.Xi am+k*j+1x, — am*i+1am+k*j+lE X|X
v[mK [;5 J;) J] i;) J;) XX

Since the X; is asequence of iid standard normal random variables,

w1 J 1 i=]j
B XX { 0 otherwise
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Thus, only thei = j terms make a nonzero contribution. Thisimplies

m i+1 m+k i+1

m
— 2 %az (m—i+1)
i

— g (az)m+1+( )m—l—---—i—az}

_ ak [17 (aZ)rTHl]

For k < 0, we start from

m mk

CY[m, k] — Z) %amfi+1am+k*j+lE[xixj:|
i=0 j=
Asinthecaseof k> 0, only thei = j terms make a contribution. Also, sincem+k < m,

v[mK == Z —jtlgmik—j+l _ 5k Z am+k j+lgmik—j+1

By steps quite similar to those for k > 0, we can show that
a2
1-a?

Cy[mk = a {1 — (az)m“‘“}

A general expression that isvalid for al mand k would be

a2 2a‘|<| [1_ (aZ)min(m,m+k)+l}

Cy[mk =

Since Cy[m, k| depends on m, the Y;, process is not wide sense stationary.



