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Problem 6.2.4
The statement is false. As a counterexample, consider the rectified cosine waveform X

�
t ���

R � cos2π f t � of Example 6.8. When t � π � 2, then cos2π f t � 0 so that X
�
π � 2 ��� 0. Hence X

�
π � 2 �

has PDF

fX � π� 2 	
�
x �
� δ

�
x �

That is, X
�
π � 2 � is a discrete random variable.

Problem 6.3.4
Since the problem states that the pulse is delayed, we will assume T � 0. This problem is difficult

because the answer will depend on t. In particular, for t � 0, X
�
t �
� 0 and fX � t 	

�
x �� δ

�
x � . Things

are more complicated when t � 0. For x � 0, P �X �
t �
� x��� 1. For x � 1, P � X �

t ��� x��� 0. Lastly,
for 0 � x � 1,

P � X �
t ��� x��� P e � � t � T 	 u � t � T �
� x � P � t � lnx � T � t ��� FT

�
t ��� FT

�
t � lnx �

Note that condition T � t is needed to make sure that the pulse doesn’t arrive after time t. The other
condition T � t � lnx ensures that the pulse didn’t arrrive too early and already decay too much. We
can express these facts in terms of the CDF of X

�
t � .

FX � t 	
�
x ��� 1 � P �X �

t ��� x���
0 x � 0
1 � FT

�
t � lnx ��� FT

�
t � 0 � x � 1

1 x � 1

We can take the derivative of the CDF to find the PDF. However, we need to keep in mind that the
CDF has a jump discontinuity at x � 0. In particular, since ln0 ��� ∞,

FX � t 	
�
0 �
� 1 � FT

� � ∞ ��� FT
�
t �
� 1 � FT

�
t �

Hence, when we take a derivative, we will see an impulse at x � 0. The PDF of X
�
t � is

fX � t 	
�
x �
� � 1 � FT

�
t ��� δ � x ��� fT

�
t � lnx ��� x 0 � x � 1

0 otherwise

Problem 6.4.2
independent Gaussian random variables. Hence, each Wn must have the same PDF. That is, the

Wn are identically distributed. However, since Wn � 1 and Wn both use Xn � 1 in their averaging, Wn � 1

and Wn are dependent. We can verify this observation by calculating the covariance of Wn � 1 and Wn.
First, we observe that for all n,

E �Wn ��� �
E �Xn ��� E �Xn � 1 ��� � 2 � 30
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Next, we observe that Wn � 1 and Wn have covariance

Cov �Wn � 1 ! Wn ��� E �Wn � 1Wn �"� E �Wn � E �Wn � 1 �
� 1

4
E � � Xn � 1 � Xn � 2 � � Xn � Xn � 1 �#��� 900

We observe that for n $� m, E � XnXm ��� E �Xn � E �Xm ��� 900 while

E X2
n � Var � Xn��� �

E �Xn ��� 2 � 916

Thus,

Cov �Wn � 1 ! Wn ��� 900 � 916 � 900 � 900
4

� 900 � 4

Since Cov �Wn � 1 ! Wn ��$� 0, Wn and Wn � 1 must be dependent.

Problem 6.4.3
successes k � 1 and k is exactly y � 0 iff after success k � 1, there are y failures followed by a

success. Since the Bernoulli trials are independent, the probability of this event is
�
1 � p � y p. The

complete PMF of Yk is

PYk

�
y ��

�
1 � p � y p y � 0 ! 1 ! % % %

0 otherwise

Since this argument is valid for all k including k � 1, we can conclude that Y1 ! Y2 ! % % % are identically
distributed. Moreover, since the trials are independent, the failures between successes k � 1 and k
and the number of failures between successes k&"� 1 and k& are independent. Hence, Y1 ! Y2 ! % % % is an
iid sequence.

Problem 6.5.6
The random variables K and J have PMFs

PJ
�

j ��
α je' α

j! j � 0 ! 1 ! 2 ! % % %
0 otherwise

PK
�
k ��

βke' β

k! k � 0 ! 1 ! 2 ! % % %
0 otherwise

For n � 0, we can find the PMF of N � J � K via

P � N � n���
∞

∑
k ( � ∞

P � J � n � k ! K � k�

Since J and K are independent, non-negative random variables,

P � N � n���
n

∑
k ( 0

PJ
�
n � k � PK

�
k �

�
n

∑
k ( 0

αn � ke � α
�
n � k � !

βke � β

k!

�
�
α � β � ne � � α ) β 	

n!

n

∑
k ( 0

n!
k!

�
n � k � !

α
α � β

n � k β
α � β

k

1
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The marked sum above equals 1 because it is the sum of a binomial PMF over all possible values.
The PMF of N is the Poisson PMF

PN
�
n �
�

� α ) β 	 ne'+* α, β-
n! n � 0 ! 1 ! 2 ! % % %

0 otherwise

Problem 6.5.7

(a) For Xi ��� lnUi, we can write

P �Xi � x��� P � � lnUi � x��� P � lnUi �.� x��� P Ui � e � x

When x � 0, e � x � 1 so that P �Ui � e � x ��� 1. When x � 0, we have 0 � e � x � 1, implying
P �Ui � e � x ��� e � x. Combining these facts, we have

P � Xi � x��� 1 x � 0
e � x x � 0

This permits us to show that the CDF of Xi is

FXi

�
x ��� 1 � P �Xi � x��� 0 x � 0

1 � e � x x � 0

We see that Xi has an exponential CDF with mean 1.

(b) Note that N � n iff

n

∏
i ( 1

Ui � e � t �
n ) 1

∏
i ( 1

Ui

By taking the logarithm of both inequalities, we see that N � n iff

n

∑
i ( 1

lnUi �.� t �
n ) 1

∑
i ( 1

lnUi

Next, we multiply through by � 1 and recall that Xi �/� lnUi is an exponential random variable.
This yields N � n iff

n

∑
i ( 1

Xi � t �
n ) 1

∑
i ( 1

Xi

Now we recall that a Poisson process N
�
t � of rate 1 has independent exponential interarrival

times X1 ! X2 ! % % % . That is, the ith arrival occurs at time ∑i
j ( 1 X j. Moreover, N

�
t ��� n iff the first

n arrivals occur by time t but arrival n � 1 occurs after time t. Since the random variable N
�
t �

has a Poisson distribution with mean t, we can write

P
n

∑
i ( 1

Xi � t �
n ) 1

∑
i ( 1

Xi � P �N �
t �
� n��� tne � t

n!
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Problem 6.6.3
Yn � Xn � Xn � 1 � X

�
n �0� X

�
n � 1 � is a Gaussian random variable with mean zero and variance α.

Since this fact is true for all n, we can conclude that Y1 ! Y2 ! % % % are identically distributed. By Defi-
nition 6.11 for Brownian motion, Yn � X

�
n �1� X

�
n � 1 � is independent of X

�
m � for any m � n � 1.

Hence Yn is independent of Ym � X
�
m �1� X

�
m � 1 � for any m � n � 1. Equivalently, Y1 ! Y2 ! % % % is a

sequence of independent random variables.

Problem 6.7.1
The discrete time autocovariance function is

CX � m ! k��� E � � Xm � µX � � Xm ) k � µX ���
for k � 0, CX � m ! 0��� Var � Xm��� σ2

X . For k $� 0, Xm and Xm ) k are independent so that

CX � m ! k��� E � � Xm � µX �#� E � � Xm ) k � µX ����� 0

Thus the autocovariance of Xn is

CX � m ! k��� σ2
X k � 0

0 k $� 0

Problem 6.7.6
By repeated application of the recursion Cn � Cn � 1 � 2 � 4Xn, we obtain

Cn � Cn � 2

4
� 4

Xn � 1

2
� Xn

� Cn � 3

8
� 4

Xn � 2

4
� Xn � 1

2
� Xn

...

� C0

2n � 4
X1

2n � 1 � X2

2n � 2 �32 2 24� Xn

� C0

2n
� 4

n

∑
i ( 1

Xi

2n � i

(a) Since C0 ! X1 ! X2 ! % % % all have zero mean,

E �Cn ��� E �C0�
2n � 4

n

∑
i ( 1

E �Xi �
2n � i � 0

(b) The autocovariance is

CC � m ! k��� E
C0

2n � 4
n

∑
i ( 1

Xi

2n � i

C0

2m � k
� 4

m ) k

∑
j ( 1

X j

2m ) k � j

Since C0 ! X1 ! X2 ! % % % are independent (and zero mean), E �C0Xi ��� 0. This implies

CC � m ! k��� E C2
0

22m ) k � 16
m

∑
i ( 1

m ) k

∑
j ( 1

E XiX j

2m � i2m ) k � j
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For i $� j, E XiX j � 0 so that only the i � j terms make any contribution to the double sum.
However, at this point, we must consider the cases k � 0 and k � 0 separately. Since each Xi

has variance 1, the autocovariance for k � 0 is

CC � m ! k��� 1
22m ) k � 16

m

∑
i ( 1

1
22m ) k � 2i

� 1
22m ) k � 16

2k

m

∑
i ( 1

�
1 � 4 � m � i

� 1
22m ) k � 16

2k

1 � �
1 � 4 � m

3 � 4

For k � 0, we can write

CC � m ! k��� E C2
0

22m ) k � 16
m

∑
i ( 1

m ) k

∑
j ( 1

E XiX j

2m � i2m ) k � j

� 1
22m ) k � 16

m ) k

∑
i ( 1

1
22m ) k � 2i

� 1
22m ) k � 16

2 � k

m ) k

∑
i ( 1

�
1 � 4 � m ) k � i

� 1
22m ) k � 16

2k

1 � �
1 � 4 � m ) k

3 � 4

A general expression that’s valid for all m and k is

CC � m ! k��� 1
22m ) k � 16

2 5 k 5
1 � �

1 � 4 � min � m 6 m ) k 	
3 � 4

(c) Since E �Ci ��� 0 for all i, our model has a mean daily temperature of zero degrees Celsius for
the entire year. This is not a reasonable model for a year.

(d) For the month of January, a mean temperature of zero degrees Celsius seems quite reasonable.
we can calculate the variance of Cn by evaluating the covariance at n � m. This yields

Var �Cn��� 1
4n � 16

4n

4
�
4n � 1 �

3

Note that the variance is upper bounded by

Var �Cn ��� 64 � 3

Hence the daily temperature has a standard deviation of 8 ��7 3 8 4 % 6 degrees. Without actual
evidence of daily temperatures in January, this model is more difficult to discredit.
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Problem 6.7.8
process covariance is almost identical to the derivation of the Brownian motion autocovariance since
both rely on the use of independent increments. From the definition of the Poisson process, we know
that µN

�
t �
� λt. When s � t, we can write

CN
�
s ! t �� E �N �

s � N �
t �9�:� �

λs � � λt �
� E �N �

s �;� � N �
t ��� N

�
s � ��� N

�
s �#�<�:� λ2st

� E �N �
s �;� N �

t ��� N
�
s �#�=�"� E N2 � s � � λ2st

By the definition of the Poisson process, N
�
s � and N

�
t �"� N

�
s � are independent for s � t. This implies

E � N �
s �;� N �

t ��� N
�
s �#�<��� E � N �

s �#� E �N �
t ��� N

�
s �#��� λs

�
λt � λs �

Note that since N
�
s � is a Poisson random variable, Var � N �

s ����� λs. Hence

E N2 � s � � Var � N �
s �9�:� �

E �N �
s ��� 2 � λs � �

λs � 2

Therefore, for s � t,

CN
�
s ! t �� λs

�
λt � λs ��� λs � �

λs � 2 � λ2st � λs

If s � t, then we can interchange the labels s and t in the above steps to show CN
�
s ! t ��� λt. For

arbitrary s and t, we can combine these facts to write

CN
�
s ! t �� λmin

�
s ! t �

Problem 6.8.5
Since g

� 2<� is an unspecified function, we will work with the joint CDF of Y
�
t1 � τ � ! % % %>! Y �

tn � τ � .
To show Y

�
t � is a stationary process, we will show that for all τ,

FY � t1 ) τ 	?6 @ @ @=6 Y � tn ) τ 	
�
y1 ! % % %>! yn ��� FY � t1 	?6 @ @ @A6Y � tn 	

�
y1 ! % % %>! yn �

By taking partial derivatives with respect to y1 ! % % %>! yn, it should be apparent that this implies that the
joint PDF fY � t1 ) τ 	?6 @ @ @=6Y � tn ) τ 	

�
y1 ! % % %>! yn � will not depend on τ. To proceed, we write

FY � t1 ) τ 	?6 @ @ @=6Y � tn ) τ 	
�
y1 ! % % %>! yn �
� P �Y �

t1 � τ ��� y1 ! % % %B! Y �
tn � τ ��� yn �

� P g
�
X
�
t1 � τ � ��� y1 ! % % %B! g � X �

tn � τ � ��� yn

Aτ

In principle, we can calculate P �Aτ � by integrating fX � t1 ) τ 	#6 @ @ @?6 X � tn ) τ 	
�
x1 ! % % %>! xn � over the region cor-

responding to event Aτ. Since X
�
t � is a stationary process,

fX � t1 ) τ 	?6 @ @ @A6 X � tn ) τ 	
�
x1 ! % % %>! xn ��� fX � t1 	?6 @ @ @A6 X � tn 	

�
x1 ! % % %>! xn �

This implies P � Aτ� does not depend on τ. In particular,

FY � t1 ) τ 	?6 @ @ @A6 Y � tn ) τ 	
�
y1 ! % % %B! yn ��� P � Aτ�

� P � g � X �
t1 � �
� y1 ! % % %B! g � X �

tn � �
� yn �
� FY � t1 	?6 @ @ @A6Y � tn 	

�
y1 ! % % %B! yn �
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Problem 6.9.6
with this problem since Xn is not defined for n � 0. This impliesCX � n ! k� is not defined for k �C� n

and thus CX � n ! k� cannot be completely independent of k. When n is large, corresponding to a process
that has been running for a long time, this is a technical issue, and not a practical concern. Instead,
we will find σ̄2 such that CX � n ! k��� CX � k� for all n and k for which the covariance function is defined.
To do so, we need to express Xn in terms of Z0 ! Z1 ! % % %>! Zn1 . We do this in the following way:

Xn � cXn � 1 � Zn � 1

� c � cXn � 2 � Zn � 2��� Zn � 1

� c2 � cXn � 3 � Zn � 3�:� cZn � 2 � Zn � 1

...

� cnX0 � cn � 1Z0 � cn � 2Z2 �32 2 2D� Zn � 1

� cnX0 �
n � 1

∑
i ( 0

cn � 1 � iZi

Since E �Zi ��� 0, the mean function of the Xn process is

E � Xn��� cnE �X0 �:�
n � 1

∑
i ( 0

cn � 1 � iE �Zi ��� E �X0�

Thus, for Xn to be a zero mean process, we require that E �X0�E� 0. The autocorrelation function can
be written as

RX � n ! k��� E �XnXn ) k ��� E cnX0 �
n � 1

∑
i ( 0

cn � 1 � iZi cn ) kX0 �
n ) k � 1

∑
j ( 0

cn ) k � 1 � jZ j

Although it was unstated in the problem, we will assume that X0 is independent of Z0 ! Z1 ! % % % so that
E �X0Zi ��� 0. Since E �Zi ��� 0 and E ZiZ j � 0 for i $� j, most of the cross terms will drop out. For
k � 0, autocorrelation simplifies to

RX � n ! k��� c2n ) k Var � X0 �:�
n � 1

∑
i ( 0

c2 � n � 1 	=) k � 2i 	 σ̄2 � c2n ) k Var � X0 ��� σ̄2ck 1 � c2n

1 � c2

Since E �Xn ��� 0, Var � X0 ��� RX � n ! 0��� σ2 and we can write for k � 0,

RX � n ! k��� σ̄2 ck

1 � c2 � c2n ) k σ2 � σ̄2

1 � c2
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For k � 0, we have

RX � n ! k��� E cnX0 �
n � 1

∑
i ( 0

cn � 1 � iZi cn ) kX0 �
n ) k � 1

∑
j ( 0

cn ) k � 1 � jZ j

� c2n ) k Var � X0�:� c � k
n ) k � 1

∑
j ( 0

c2 � n ) k � 1 � j 	 σ̄2

� c2n ) kσ2 � σ̄2c � k 1 � c2 � n ) k 	
1 � c2

� σ̄2

1 � c2 c � k � c2n ) k σ2 � σ̄2

1 � c2

We see that RX � n ! k��� σ2c 5 k 5 by choosing

σ̄2 � �
1 � c2 � σ2

Problem 6.9.7
We can recusively solve for Yn as follows.

Yn � aXn � aYn � 1

� aXn � a � aXn � 1 � aYn � 2 �
� aXn � a2Xn � 1 � a2 � aXn � 2 � aYn � 3�

By continuing the same procedure, we can conclude that

Yn �
n

∑
j ( 0

a j ) 1Xn � j � anY0

Since Y0 � 0, the substitution i � n � j yields

Yn �
n

∑
i ( 0

an � i ) 1Xi

Now we can calculate the mean

E �Yn ��� E
n

∑
i ( 0

an � i ) 1Xi �
n

∑
i ( 0

an � i ) 1E � Xi��� 0

To calculate the autocorrelation RY � m ! k� , we consider first the case when k � 0.

CY � m ! k��� E
m

∑
i ( 0

am � i ) 1Xi

m ) k

∑
j ( 0

am ) k � j ) 1X j �
m

∑
i ( 0

m ) k

∑
j ( 0

am � i ) 1am ) k � j ) 1E XiX j

Since the Xi is a sequence of iid standard normal random variables,

E XiX j � 1 i � j
0 otherwise
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Thus, only the i � j terms make a nonzero contribution. This implies

CY � m ! k���
m

∑
i ( 0

am � i ) 1am ) k � i ) 1

� ak
m

∑
i ( 0

a2 � m � i ) 1 	

� ak �
a2 � m ) 1 � �

a2 � m �32 2 2F� a2

� a2

1 � a2 ak 1 � �
a2 � m ) 1

For k � 0, we start from

CY � m ! k���
m

∑
i ( 0

m ) k

∑
j ( 0

am � i ) 1am ) k � j ) 1E XiX j

As in the case of k � 0, only the i � j terms make a contribution. Also, since m � k � m,

CY � m ! k���G�
m ) k

∑
j ( 0

am � j ) 1am ) k � j ) 1 � a � k
m ) k

∑
j ( 0

am ) k � j ) 1am ) k � j ) 1

By steps quite similar to those for k � 0, we can show that

CY � m ! k��� a2

1 � a2 a � k 1 � �
a2 � m ) k ) 1

A general expression that is valid for all m and k would be

CY � m ! k��� a2

1 � a2 a 5 k 5 1 � �
a2 � min � m 6 m ) k 	=) 1

Since CY � m ! k� depends on m, the Yn process is not wide sense stationary.
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