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Problem 5.1.5
Theorem 5.3 which states

Plxt < X <Xo,y1 <Y < o] = Fxy (X2, ¥2) — Fxy (X2, Y1) — Fxy (X1, ¥2) + Fxy (X1, Y1)

(@) TheeventsA, B, andC are

~
~
~

(b) Intermsof thejoint CDF Fx v (X,y), we can write

PIA] = Fxy (X1,¥2) — Fxy (X1, Y1)
P[B] = Fx,y (X2,¥1) — Fxy (X1, Y1)
PI[AUBUC] = Fxy (X2,¥2) — Fx,y (X1, Y1)
(c) SinceA, B, and C are mutually exclusive,
P[AUBUC] = P[A] + P[B] + P[C]

However, since we want to express P[C|] = P[x; < X < Xp,y1 <Y <yj,| in terms of the joint
CDF Fx vy (x,y), wewrite

P[C] = PIAUBUC] — P[A] — P[B]
= Fxy (%2,¥2) = Fxy (X1, ¥2) — Fxy (X2, Y1) + Fxy (X1, Y1)

which completes the proof of the theorem.

Problem 5.1.6

1-e Y xy>0
Py () _{ 0 otherwise



First, we find the CDF Fx (x) and Fy (y).

1 0

Fx () = Fxy (x,0) :{ 0 )cjtﬁerwise
1 >0

R (Y) = Fxy (».y) :{ 0 )(;tﬁerwise

Hence, forany x> 0ory >0,
PX>x =0 PlY>y]=0
For x> 0andy > 0, thisimplies
P{X>x}U{Y >y} <PX>x+P)Y>y]=0
However,
PUX >x}U{Y >y} =1-PX<xY <y =1—(1—e X)) =g V)

Thus, we have the contradiction that e *t¥) < 0 for all X,y > 0. We can conclude that the given
function isnot avalid CDF.

Problem 5.2.4

The only difference between this problem and Example 5.2 is that in this problem we must in-
tegrate the joint PDF over the regionsto find the probabilities. Just asin Example 5.2, there arefive
cases. Wewill use variable u and v as dummy variablesfor x and y.

e X<0Oory<O

In this case, the region of integration doesn’t overlap the
region of nonzero probability and

Yy X
Fxy (X.Y) Z/ / fxy (u,v) dudv =0

e O<y<x<1



In this case, the region where the integral has a nonzero
contribution is

P 0) = [ [ b (wv) dyax
y X
:/0 /v 8uvdudyv
= Ay4(x2—v2)vdv
= 23—V} = 2P -y

e O<x<yand0<x<1

e O<y<landx>1

Py (Xy) = /yoo /Xoo fx.y (u,v) dvdu
—/oy/v18uvdudv
:/Oy4v(1v2)dv
=2y -y

e x>landy>1



In this case, the region of integration completely covers
the region of nonzero probability and

y X
&7y(x,y):/ / fxy (u,v) dudv=1

The complete answer for the joint CDF is

0 x<0ory<O
2% -yt 0<y<x<1

x4 0<x<y0<x<1
2 -y 0<y<lx>1

1 x>1ly>1

FX,Y (Xv y) =

Problem 5.3.6

(@) Thejoint PDF of X andY and the region of nonzero probability are

_J oy 0<y<x<1
fxy (x.y) { 0 otherwise

(b) Tofind the value of the constant, c, we integrate the joint PDF over all x and y.

© o 1 rx 1 ~y2 3
/ / fX.Y (X7 y) dXdy = / / Cydde = / CL dx = CL
oS0 o Jo o 2 6

Thusc = 6.

1

o ©

(c) Wecanfindthe CDF Fx (x) = P[X < X] by integrating thejoint PDF over the event X < x. For
X<0,F(X)=0.Forx>1,F(x)=1. For0<x<1,

B9 = [ v () ay o )

:/OX/OXB)/dy/dx’
= [apax = x
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The complete expression for the joint CDF is
0 x<0
Fx(x)=< x3 0<x<1
1 x>1

(d) Similarly, we find the CDF of Y by integrating fx vy (x,y) over theevent Y <y. Fory < 0,
Fr(y)=0andfory>1 K/ (y)=1 For0<y<1,

:// iy (X.y) dy d¥’ I
y<y
y rl
:/ / 6y dx’ dy y
0 Jy
y
- [eya-y)ay = 3?2y - 3 -2 il

The complete expression for the CDF of Y is
0 y<0
Rr(y)=1{ 3y¥-2° 0<y<1
1 y>1

(e) Tofind PlY < X/2], weintegrate the joint PDF fyx vy (x,y) over theregiony < x/2.

Y

PlY <X/2] = // 6ydydx 1
_/ 3y2‘></2 %
13)(2d P
—/ —dx=1/4 ]

Problem 5.4.5

The position of the mobile phoneisequally likely to be anywherein the area of acircle with radius
16 km. Let X and 'Y denote the position of the mobile. Since we are given that the cell has aradius
of 4 km, we will measure X and Y in kilometers. Assuming the base station is at the origin of the
X,Y plane, thejoint PDF of X andY is

L X24+y?<16
— 161 —
By (%) { 0 otherwise

Since the radial distance of the mobile from the base stationisR= v/X2+Y?, the CDF of Ris
FR(r) = PR<r]=P[X*+Y2<1]

By changing to polar coordinates, we seethat for 0 <r < 4 km,

21 r’
/ —dr de’' —r2/16



0 r<o
Fr(r) =< r?/16 0<r<4
1 r>4

Then by taking the derivative with respect to r we arrive at the PDF

fr(r) r/8 0<r<4
RYW™Y 0  otherwise

Problem 5.5.4
Random variables X and Y have joint PDF

2 0<y<x<l1
0 otherwise

fxy (Xy) = {

Before finding moments, it is helpful to first find the marginal PDFs. For 0 < x < 1,

[ X
fx (X):[ fxy (x.y) dy:[) 2dy = 2x

Notethat fx (x) =0forx<Oorx> 1. For0<y<1,

) 1
) = [ vy x= [ 20x=2(1-y)
—00 y
Also, fory<Oory> 1, fy(y) =0. Complete expressions for the margina PDFs are

[ 2x 0<x<1 _J 21—y O0<y<1
fx (X)_{ 0 otherwise fY(y)_{ 0 otherwise

(@) Thefirst two momentsof X are

E[X] = /fox (%) dx:/Olezdx: 2/3

E[x? :/m fy (X) dx:/olzx3dx:1/2
Thevariance of X isVar[X] = E[X?] — (E[X])?=1/2—4/9=1/18,

(b) The expected value and second moment of Y are

1
=1/3
0

e = [" ¢t ay= [ 2Pa-yay= 2y

Thevariance of Y isVar[Y] = E[Y?] — (E[Y])?=1/6—1/9=1/18.

ev) = [yt ay= [ aya-yay-y -2

1
~1/6
0
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(c) Before finding the covariance, we find the correlation

E[XY] :/01/0)(2xydydx:/olx3dx:1/4
The covarianceis Cov [X,Y] = E[XY] — E[X]E[Y] = 1/36.
(d) EX+Y]=E[X]+E[Y]=2/3+1/3=1
() By Theorem 5.10, Var[X + Y] = Var[X] + Var[Y] 4+ 2Cov[X,Y] = 1/6.

Problem 5.6.4

~

5x2 2
2 —1<x<10<y<x
W0 G e

(8 Theevent A= {Y < 1/4} has probability

1/2 1/4 5,2
/ /—dydx 2// 5ldd
1/2

1/2
= / 5x* dx+ —dx
0 12 4

V2 oo g
= "4 5¢/12]; , = 19/48

Thisimplies

0 otherwise

[ 120x%/19 —-1<x<10<y<x%y<1/4
10 otherwise

nyYlA(XaY)—{ fxy (xY) /PIA] - (xy) €A

(b)

00 1 120X2
fyialy) = Lw fxvia (X, y) dx = Z/W 19 dx

_ [ 81-y¥?) o<y<1/4
10 otherwise

(c) The conditional expectation of Y given Ais

1/4

1/4 80 y2 2y7/2 65
= /2)d Y 9
ENIA /o 1 YHdy=13 ( 27 )|,

T 532




(d) Tofind fxa (), we can write

fxja (X) = /7oo fx via (X y) dy

However, when we substitute fy ya (X,Y), the limitswill depend on the value of x. When [x| <

1/2, we have

19 Y~ 19

¥ 120x? 120x4
fea®) = [ o

When —1<x<-1/20r1/2<x<1,
1/4 120%2 30x2
fead = [

19 =719

The complete expression for the conditional PDF of X given Ais
30x2/19 —1<x<-1/2
i (X) = 120x4/19 —1/2<x<1/2
XAVY T 30x2/19  1/2<x<1
0 otherwise

(e) The conditional mean of X given Ais

~1/2 303 12 120x° 1 30x3
EX|A = —dx / dx /
XIA /4 19 F -1/2 19 - 1

/2 1

Problem 5.7.5
Random variables X and Y have joint PDF

1/2 -1<x<y<1

X dx=0
9 X

A

fxy (x.y) :{ 0 otherwise

(@) For —1<y<1,themargina PDFof Y is

oy (y) :/Z ey (x.y) dx = %/yldx— (y+1)/2

The complete expression for the marginal PDF of Y is

f ()_ <y+1)/2 _1§y§1
YW=1o0 otherwise

(b) The conditional PDF of X givenY is

kv (xy) 1_iy —1<x<y
v (Xy) = fy(y) | O  otherwise

v

(c) GivenY =Yy, theconditional PDF of X isuniformover [—1,y]. Hencethe conditional expected

valueisE[X)Y =y]=(y—1)/2.



Problem 5.7.6
thejoint PDF of X and Y is

&NMWZ{émﬁ)&;ﬁgf<ﬂ
(@) Themarginal PDF of X is
o=z by e
The conditional PDF of Y given X is
fxy (XY) _{ /(212 —x2) y? <r?—x?
0

Fopx (yx) = fx (X) otherwise

(b) Given X = x, we observe that over theinterval [—/r2 —x2,1/r2 —x2|, Y has auniform PDF.
Since the conditional PDF fyx (y|x) is symmetric about y = 0,

EY[X=x =0

Problem 5.8.4
X andY are independent random variables with PDFs

[ 2x 0<x<1 _ [ 3% 0<y<1
B (x) _{ 0 otherwise ) _{ 0 otherwise

For the event A = {X > Y}, this problem asks us to calculate the conditional expectations E[X|A]
and E[Y|A]. We will do this using the conditional joint PDF fy yia (X,Y). Since X and Y are inde-
pendent, it is tempting to argue that the event X > Y does not alter the probability model for X and
Y. Unfortunately, thisis not the case. When we learn that X > Y, it increases the probability that X

islargeand Y issmall. We will see this when we compare the conditional expectations E[X|A] and
E[Y|A] to E[X] and E[Y].

(8) Wecan calculatethe unconditional expectations, E[X] and E[Y], usingthemarginal PDFs fx (X)
and fy (y).

amzfﬁﬂmmzﬁu%m:y3
ev)= [t ay= [ aPay=3/a

(b) First, weneedto calculatethe conditional joint PDF fy ya (X, Y|&) X,y. Thefirst stepisto write
down thejoint PDF of X andY:

6xy2 0<x<10<y<1
o) = 00 ) = { % G0
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The event A has probability

A
PA] = // iy () dydx :
x>y
1 px X>Y
:/ / 6xy? dydx -
o Jo

1
— / 2 dx— 2/5 1
0
The conditional joint PDF of X andY given Ais

fxy (%) (X 1
B y) €A
fxvia(%y) = { 0 i otherwise
_J 1597 0<y<x<1
RN otherwise :
1

The triangular region of nonzero probability is asignal that given A, X and Y are no longer
independent. The conditional expected value of X given Ais

EXIAI= [ [ xhyaxyla)xydydx
1 X
:15/ x2/ y2 dydx
0 0
1
_5 / xodx = 5/6
0
The conditional expected value of Y given Ais
e 1 X 15 1
E[Y|A :/ / yfxyia(Xy) dydx:15/ x/ y3dydx:z/ x°dx=5/8
—0J—o o Jo 0

We seethat E[X|A] > E[X] while E[Y|A] < E[Y]. That is, learning X > Y gives us a clue that
X may be larger than usual while Y may be smaller than usual.

Problem 5.8.6
Random variables X and Y have joint PDF

Ne N 0<x<
B (%y) = { 0 otﬁervﬁsz)

ForW =Y — X wecanfind fy (w) by integrating over the region indicated in the figure below to get
Fw (w) then taking the derivative with respect tow. SinceY > X, W =Y — X isnonnegative. Hence
Fw (w) = 0forw < 0. For w >0,

10



Fw (W) =1—-PW>w =1-P)Y > X+W,
1 / / Ae N dydx y
X<Y<X+w
=1-¢e X
The complete expressions for the joint CDF and corresponding joint PDF are
0 w<0 0 w<0
FVV(W)_{ 1_67)\W WZO fW(W)_{ )\ef)\w WZO
Problem 5.8.7

(@) Tofindif Wand X areindependent, we must be ableto factor thejoint density function fx w (X, w)
into the product fx (x) fw (w) of marginal density functions. To verify this, we must find the
joint PDF of X andW. First we find the joint CDF.

Fxw (X, W) =PX <x,W <w] =P[X <X,Y =X <wW =PX <XY<X+WwW

SinceY > X, the CDF of W satisfies Fx w (X,w) = P[X <x, X <Y < X+w]. Thus, forx>0
andw > 0,

/ eV dydx v
X/

( Ae*%y ”W> dX
X

{X<x}n {X<Y<X+w}

I
o\o\

X

e AKX +w) ‘l‘)\ f)\x’) dX/

o

—A(

+w) f)\x’

I
®

0
=(1-e™)@-e™
We see that Fx w (X, w) = Fx (X) Fw (w). Moreover, by applying Theorem 5.2,

92 X, W e
fX=W(X’W):% Ae Mhe M = fx () fw (W)

Since we have our desired factorization, W and X are independent.
(b) Following the same procedure, we find the joint CDF of Y and W.
Fuy (Wy) =PW <wY <y] =Py =X <wY <y] =Py < X+wWY <]

The region of integration corresponding to the event {Y < x+w,Y <y} depends on whether
y<wory>w. Keepinmindthat althoughW =Y — X <Y, the dummy arguments y and
w of fyy (W,y) need not obey the same constraints. In any case, we must consider each case
separately. For y > w, the region of integration resembles

11



(T<y0{T<X+w}

Thusfory > w, theintegration is

Y—W  pU+W y y
Fwy (WY) = / / A%e N dvdu+ / / A%e Mdvdu
0 u y—wJu

= /0 o [e*“ — ef“”*"")} du-+A ’ [e*“ — e*Ay} du

y—w

= [_e—hu+e—x(u+w)} ‘:W_‘_ {—e‘“‘ _ u)\e_)\y} )y

y—W
—1-e™ )\weV

Fory <w,

yry 2. AV Y

Ry () = [ ["3%e Maveu
Oy u {Y<y}
:/ [—Aef“%Ae“”} du
0 y

y
0

= Aue NV _egN

=1—(1+Ay)eV
The complete expression for the joint CDF is

1-e™ e 0<w<y
Fy (Wy) =4 1—(1+Ay)e™  0<y<w

0 otherwise
Applying Theorem 5.2 yields
%Ry (W,y) 2%V 0<w<y
fwy (WYy) = Tay - { 0 otherwise

Thejoint PDF fyy (w,Yy) doesn't factor and thusW and Y are dependent.

Problem 5.8.8
We need to define the events A= {U < u} and B={V < v}. Inthiscase,

Fuv (u,v) = P[AB] = P[B] — P[A°B] =PV < V] - P[U > u,V <V]

12



NotethatU = min(X,Y) > uif andonly if X > uandY > u. Inthe sameway, sinceV = max(X.,Y),
V <vifandonlyif X <vand¥Y <v. Thus

PU>uV <v|=PX>uY>uX<VvY<v=Pu<X<vu<Y <V
Thus, the joint CDF of U andV satisfies
Fuv(u,v) =PV <v|-PU >uV <Vv|]=PX<VY <V -Pu<X<vu< X<V
Since X and Y are independent random variables,

Fuv (Uv) =PX <V|P[Y <v] - Plu< X <VPlu< X <V
=Fx (V) Fv (V) = (Fx (V) = Fx (0) (Fy (V) = Ry (U))
= Fx (V) Ry (U) + Fx () Fy (V) — Fx (u) Fy (u)
Thejoint PDFis

azl:U,V (U,V)
ouov
0

= S5l XV F () +Fx(u) fy (v)]

= fx (U) fy (V) + fx (v) fv (V)

fU,V (U,V) =

Problem 5.9.5
the bivariate Gaussian PDF as

1 2 2 1 ~ 2 jpx2
f X,y) = e (-x)7/20% = o= (y-Rv(x)"/26¢
Xy (%) Ox /270 Gyv/2m

where
. o .
HY(X):HYJFPG—;(X*HX) Oy = 0Oyy/1—p?

However, the definitions of [iy(x) and Gy are not particularly important for this exercise. When we
integrate the joint PDF over all x and y, we obtain

(o) (o) (o) 1 2 2 [ee] 1 o 2 ~0
Fuy (X, Wd:/ gmwwm/'___waWMde
/—oo/—oo X,Y( y) y o O_x\/z_[ o 6-Y\/E[ y

N

1
*© 1 2 /52
— —(x—Hx)*/20
= e x dx
/—oo Ox V21
The marked integral equals 1 because for each value of X, it isthe integral of a Gaussian PDF of one

variable over al possible values. In fact, itistheintegral of the conditional PDF fyx (y|x) over all
possibley. To complete the proof, we see that

—o00J—00 —o0 Oy

since the remaining integral istheintegral of the marginal Gaussian PDF fx (x) over al possible x.
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Problem 5.10.4
Let A denote the event X, = max(Xy,... , X,). We can find P[A] by conditioning on the value of
Xn-

P[A] = P[XlSXmXZ anv 7Xn1 an]
:/7 PIX1 < Xn, X2 < Xn,+++, Xno1 < Xa[Xn =X fx, (X) dx

:/ PX1 <X, Xo < X+, Xn—1 < X fx (X) dx

Since Xq,..., X1 areiid,

8

P[A = P[X1 < X|P[Xo < X] -+ P[Xp_1 < X fx (X) dx

|
8

|
8

=
|
o

)

I
8
—
X
7
=
—_
—
=
o
X

I

=
~

>

Not surprisingly, sincethe X; areidentical, symmetry would suggest that X, isaslikely asany of the
other X; to be the largest. Hence P[A] = 1/n should not be surprising.

14



