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Problem 4.1.4

(a) By definition,
�
nx� is the smallest integer that is greater than or equal to nx. This implies

nx � �
nx��� nx � 1

(b) By part (a),

nx
n
�

�
nx�
n

� nx � 1
n

That is,

x �
�
nx�
n

� x � 1
n

This implies

x � lim
n � ∞

�
nx�
n

� lim
n � ∞

x � 1
n � x

Problem 4.2.4

fX � x� �
ax2 � bx 0 � x � 1
0 otherwise

First, we note that a and b must be chosen such that the above PDF integrates to 1.

	 1

0
� ax2 � bx� dx � a
 3 � b
 2 � 1

Hence, b � 2 � 2a
 3 and our PDF becomes

fX � x� � x� ax � 2 � 2a
 3 �
For the PDF to be non-negative for x ��
 0 � 1� , we must have ax � 2 � 2a
 3 � 0 for all x ��
 0 � 1� . This
requirement can be written as

a� 2 
 3 � x��� 2 � 0 � x � 1 �
For x � 2 
 3, the requirement holds for all a. However, the problem is tricky because we must con-
sider the cases 0 � x � 2 
 3 and 2 
 3 � x � 1 separately because of the sign change of the inequality.
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When 0 � x � 2 
 3, we have 2 
 3 � x � 0 and the requirement is most stringent at x � 0 where we
require 2a
 3 � 2 or a � 3. When 2 
 3 � x � 1, we can write the constraint as a� x � 2 
 3 ����� 2. In
this case, the constraint is most stringent at x � 1, where we must have a
 3 ��� 2 or a ��� 6. Thus
our a complete expression for our requirements are

� 6 � a � 3 b � 2 � 2a
 3

As we see in the following plot, the shape of the PDF fX � x� varies greatly with the value of a.
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Problem 4.3.7
find the PDF of U by taking the derivative of FU � u� . The CDF and corresponding PDF are

FU � u� �

0 u ��� 5

� u � 5 ��
 8 � 5 � u ��� 3
1 
 4 � 3 � u � 3
1 
 4 � 3 � u � 3 ��
 8 3 � u � 5
1 u � 5 �

fU � u� �

0 u ��� 5
1 
 8 � 5 � u ��� 3
0 � 3 � u � 3
3 
 8 3 � u � 5
0 u � 5 �

(a) The expected value of U is

E 
U �
	 ∞

� ∞
ufU � u� du �

	 � 3

� 5

u
8

du �
	 5

3

3u
8

du

�
u2

16

� 3

� 5
� 3u2

16

5

3

� � 1 � 3 � 2

(b) The second moment of U is

E U2
	 ∞

� ∞
u2 fU � u� du �

	 � 3

� 5

u2

8
du �

	 5

3

3u2

8
du

�
u3

24

� 3

� 5
� u3

8

5

3

� 49 
 3

The variance of U is Var 
U � � E U2 � � E 
U ��� 2 � 37 
 3.
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(c) Note that 2U

� e� ln2 � U . This implies that

	
2udu �

	
e� ln2 � udu �

1
ln2

e� ln2 � u
�

2u

ln2

The expected value of 2U is then

E 2U

�
	 ∞

� ∞
2u fU � u� du �

	 � 3

� 5

2u

8
du �

	 5

3

3 � 2u

8
du

�
2u

8ln2

� 3

� 5
� 3 � 2u

8ln2

5

3

�
2307

256ln2 � 13 � 001

Problem 4.4.10
For n � 1, we have the fact E 
X� � 1 
 λ that is given in the problem statement. Now we assume that
E Xn � 1

� � n � 1 � ! 
 λn � 1. To complete the proof, we show that this implies that E 
Xn� � n! 
 λn.
Specifically, we write

E 
Xn� �
	

0
xnλe

� λx dx

Now we use the integration by parts formula  udv � uv �� vdu with u � xn and dv � λe
� λx dx.

This implies du � nxn � 1 dx and v � � e
� λx so that

E 
Xn� � � xne
� λx

∞

0
�
	 ∞

0
nxn� 1e

� λx dx

� 0 � n
λ

	 ∞

0
xn � 1λe

� λx dx

�
n
λ

E Xn� 1

By our induction hyothesis, E Xn� 1

� � n � 1 � ! 
 λn � 1 which implies

E 
Xn� � n! 
 λn

Problem 4.4.11

(a) Since fX � x�!� 0 and x � r over the entire integral, we can write
	 ∞

r
xfX � x� dx �

	 ∞

r
r fX � x� dx � rP 
X � r �

(b) We can write the expected value of X in the form

E 
X� �
	 r

0
xfX � x� dx �

	 ∞

r
xfX � x� dx
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Hence,

rP 
X � r �"�
	 ∞

r
xfX � x� dx � E 
X�#�

	 r

0
xfX � x� dx

Allowing r to approach infinity yields

lim
r � ∞

rP 
X � r �"� E 
X�$� lim
r � ∞

	 r

0
xfX � x� dx � E 
X�#� E 
X� � 0

Since rP 
X � r �%� 0 for all r � 0, we must have limr � ∞ rP 
X � r � � 0.

(c) We can use the integration by parts formula  udv � uv �� vdu by defining u � 1 � FX � x�
and dv � dx. This yields

	 ∞

0

 1 � FX � x�&� dx � x 
 1 � FX � x�'�)( ∞0 �

	 ∞

0
xfX � x� dx

By applying part (a), we now observe that

x 
 1 � FX � x�'�)( ∞0 � lim
r � ∞

r 
 1 � FX � r �'�*� 0 � lim
r � ∞

rP 
X � r �
By part (b), limr � ∞ rP 
X � r � � 0 and this implies x 
 1 � FX � x�&�)( ∞0 � 0. Thus,

	 ∞

0

 1 � FX � x�&� dx �

	 ∞

0
xfX � x� dx � E 
X�

Problem 4.5.6
We are given that there are 100 � 000 � 000 men in the United States and 23 � 000 of them are at least 7
feet tall, and the heights of U.S men are independent Gaussian random variables with mean 5+ 10+ + .

(a) Let H denote the height in inches of a U.S male. To find σX, we look at the fact that the prob-
ability that P 
H � 84� is the number of men who are at least 7 feet tall divided by the total
number of men (the frequency interpretation of probability). Since we measure H in inches,
we have

P 
H � 84� �
23 � 000

100 � 000 � 000 � Φ
70 � 84

σX � 0 � 00023

Since Φ � � x� � 1 � Φ � x� � Q� x� ,
Q� 14 
 σX � � 2 � 3 � 10

� 4

From Table 4.2, this implies 14 
 σX � 3 � 5 or σX � 4.

(b) The probability that a randomly chosen man is at least 8 feet tall is

P 
H � 96� � Q
96 � 70

4 � Q� 6 � 5 �

Unfortunately, Table 4.2 doesn’t include Q� 6 � 5 � , although it should be apparent that the prob-
ability is very small. In fact, Q� 6 � 5 � � 4 � 0 , 10

� 11.
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(c) First we need to find the probability that a man is at least 7’6”.

P 
H � 90� � Q
90 � 70

4 � Q� 5 �.- 3 � 10
� 7

� β

Although Table 4.2 stops at Q� 4 � 99 � , if you’re curious, the exact value is Q� 5 � � 2 � 87 � 10
� 7.

Now we can begin to find the probability that no man is at least 7’6”. This can be modeled as
100,000,000 repetitions of a Bernoulli trial with parameter 1 � β. The probability that no man
is at least 7’6” is

� 1 � β � 100 / 000 / 000

� 9 � 4 , 10
� 14

(d) The expected value of N is just the number of trials multiplied by the probability that a man is
at least 7’6”.

E 
N� � 100 � 000 � 000 � β � 30

Problem 4.6.8
good, that is, no foul occurs. The CDF of D obeys

FD � y� � P 
D � y (G� P 
G�$� P 
D � y (Gc� P 
Gc�
Given the event G,

P 
D � y (G� � P 
X � y � 60� � 1 � e
� � y� 60 �10 10 � y � 60 �

Of course, for y � 60, P 
D � y (G� � 0. From the problem statement, if the throw is a foul, then
D � 0. This implies

P 
D � y (Gc� � u� y�
where u� �2� denotes the unit step function. Since P 
G� � 0 � 7, we can write

FD � y� � P 
G� P 
D � y (G�*� P 
Gc� P 
D � y (Gc�

�
0 � 3u� y� y � 60
0 � 3 � 0 � 7 � 1 � e

� � y� 60 �10 10 � y � 60

Another way to write this CDF is

FD � y� � 0 � 3u� y�3� 0 � 7u� y � 60 � � 1 � e
� � y� 60 �10 10 �

However, when we take the derivative, either expression for the CDF will yield the PDF. However,
taking the derivative of the first expression perhaps may be simpler:

fD � y� �
0 � 3δ � y� y � 60
0 � 07e

� � y � 60 �10 10 y � 60

Taking the derivative of the second expression for the CDF is a little tricky because of the product
of the exponential and the step function. However, applying the usual rule for the differentation of
a product does give the correct answer:

fD � y� � 0 � 3δ � y�3� 0 � 7δ � y � 60 � � 1 � e
� � y� 60 �10 10 �4� 0 � 07u� y � 60 � e� � y� 60 �10 10

� 0 � 3δ � y�3� 0 � 07u� y � 60 � e� � y� 60 �50 10

The middle term δ � y � 60 � � 1 � e
� � y� 60 �10 10 � dropped out because at y � 60, e

� � y� 60 �50 10

� 1.
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Problem 4.6.9
The professor is on time and lectures the full 80 minutes with probability 0.7. That is, P 
T � 80� �0 � 7. Likewise when the professor is more than 5 minutes late, the students leave and a 0 minute lec-

ture is observed. Since he is late 30% of the time and given that he is late, his arrival is uniformly
distributed between 0 and 10 minutes, the probability that there is no lecture is

P 
T � 0� � � 0 � 3 � � 0 � 5 � � 0 � 15

The only other possible lecture durations are uniformly distributed between 75 and 80 minutes, be-
cause the students will not wait longer then 5 minutes, and that probability must add to a total of
1 � 0 � 7 � 0 � 15 � 0 � 15. So the PDF of T can be written as

fT � t � �

0 � 15δ � t � t � 0
0 � 03 75 � 7 � 80
0 � 7δ � t � 80 � t � 80
0 otherwise

Problem 4.7.14
We can prove the assertion by considering the cases where a � 0 and a � 0, respectively. For

the case where a � 0 we have

FY � y� � P 
Y � y� � P X � y � b
a � FX

y � b
a

Therefore by taking the derivative we find that

fY � y� �
1
a

fX
y � b

a
a � 0

Similarly for the case when a � 0 we have

FY � y� � P 
Y � y� � P X � y � b
a � 1 � FX

y � b
a

And by taking the derivative, we find that for negative a,

fY � y� � � 1
a

fX
y � b

a
a � 0

A valid expression for both positive and negative a is

fY � y� �
1
(a ( fX

y � b
a

Therefore the assertion is proved.
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Problem 4.7.15
Understanding this claim may be harder than completing the proof. Since 0 � F � x�6� 1, we

know that 0 � U � 1. This implies FU � u� � 0 for u � 0 and FU � u� � 1 for u � 1. Moreover, since
F � x� is an increasing function, we can write for 0 � u � 1,

FU � u� � P 
F � X �%� u� � P X � F
� 1 � u� � FX F

� 1 � u�
Since FX � x� � F � x� , we have for 0 � u � 1,

FU � u� � F � F � 1 � u��� � u

Hence the complete CDF of U is

FU � u� �
0 u � 0
u 0 � u � 1
1 u � 1

That is, U is a uniform 
 0 � 1� random variable.

Problem 4.7.16
First, we must verify that F

� 1 � u� is a nondecreasing function. To show this, suppose that for u �
u+ , x � F

� 1 � u� and x+ � F
� 1 � u+'� . In this case, u � F � x� and u+ � F � x+&� . Since F � x� is nondecreasing,

F � x�!� F � x+ � implies that x � x+ . Hence, we can write

FX � x� � P F
� 1 � U �.� x � P 
U � F � x�&� � F � x�

Problem 4.8.3
W is

fW � w� �
17
32π

e
� w2 0 32

(a) SinceW has expected value µ � 0, fW � w� is symmetric about w � 0. Hence P 
C� � P 
W � 0� �1 
 2. From Definition 4.15, the conditional PDF of W given C is

fW 8C � w� �
fW � w�*
 P 
C� w � C
0 otherwise �

2e
� w2 0 32 
 7 32π w � 0

0 otherwise

(b) The conditional expected value of W given C is

E 
W (C� �
	 ∞

� ∞
wfW 8C � w� dw �

2

4
7

2π

	 ∞

0
we

� w2 0 32 dw

Making the substitution v � w2 
 32, we obtain

E 
W (C� �
327
32π

	 ∞

0
e
� vdv �

327
32π
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(c) The conditional second moment of W is

E W2 (C �
	 ∞

� ∞
w2 fW 8C � w� dw � 2

	 ∞

0
w2 fW � w� dw

We observe that w2 fW � w� is an even function. Hence

E W2 (C � 2
	 ∞

0
w2 fW � w� dw �

	 ∞

� ∞
w2 fW � w� dw � E W2

� σ2

� 16

Lastly, the conditional variance of W given C is

Var 
W (C� � E W2 (C � � E 
W (C�9� 2 � 16 � 32 
 π � 5 � 81

Problem 4.8.4

(a) To find the conditional moments, we first find the conditional PDF of T. The PDF of T is

fT � t � �
100e

� 100t t � 0
0 otherwise

The conditioning event has probability

P 
T � 0 � 02� �
	 ∞

0 : 02
fT � t � dt � � e

� 100t ∞
0 : 02 � e

� 2

From Definition 4.15, the conditional PDF of T is

fT 8 T ; 0 : 02 � t � �
fT � t �

P< T ; 0 : 02= t � 0 � 02

0 otherwise �
100e

� 100 � t � 0 : 02 � t � 0 � 02
0 otherwise

The conditional mean of T is

E 
T (T � 0 � 02� �
	 ∞

0 : 02
t � 100 � e� 100 � t � 0 : 02 � dt

The substitution τ � t � 0 � 02 yields

E 
T (T � 0 � 02� �
	 ∞

0
� τ � 0 � 02 � � 100 � e� 100τ dτ

�
	 ∞

0
� τ � 0 � 02 � fT � τ � dτ

� E 
T � 0 � 02� � 0 � 03

(b) The conditional second moment of T is

E T2 (T � 0 � 02 �
	 ∞

0 : 02
t2 � 100 � e� 100 � t � 0 : 02 � dt
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The substitution τ � t � 0 � 02 yields

E T2 (T � 0 � 02 �
	 ∞

0
� τ � 0 � 02 � 2 � 100 � e� 100τ dτ

�
	 ∞

0
� τ � 0 � 02 � 2 fT � τ � dτ

� E � T � 0 � 02 � 2

Now we can calculate the conditional variance.

Var 
T (T � 0 � 02� � E T2 (T � 0 � 02 � � E 
T (T � 0 � 02�9� 2

� E � T � 0 � 02 � 2 � � E 
T � 0 � 02�9� 2

� Var 
T � 0 � 02�
� Var 
T� � 0 � 01
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