Probability and Stochastic Processes:
A Friendly Introduction for Electrical and Computer Engineers
Roy D. Yates and David J. Goodman

Problem Solutions: Yatesand Goodman,4.1.44.2.44.3.74.4104.41145.64.6.84.6.94.7.14
47.154.7.16 48.3and 4.8.4

Problem 4.1.4
(a) By definition, [nx] isthe smallest integer that is greater than or equal to nx. Thisimplies

nx< [nx] < nx+1

(b) By part (a),

—<—X<
n n n
That is,
nx| 1
X< —— <X+ -
n n
Thisimplies
nx| ..
X< lim— < I|limx4+==x
n—oo n n—oo n
Problem 4.2.4

[ al+bx 0<x<1
fx (X)_{ 0 otherwise

First, we note that a and b must be chosen such that the above PDF integratesto 1.
1
/ (@@ +bx)dx—a/3+b/2—1
0
Hence, b =2 — 2a/3 and our PDF becomes
fx (X) = Xx(ax+2—2a/3)

For the PDF to be non-negativefor x € [0, 1], we must have ax+2—2a/3 > Ofor all x € [0,1]. This
requirement can be written as

a(2/3—x) <2 (0<x<1)

For x = 2/3, the requirement holds for all a. However, the problem is tricky because we must con-
sider the cases 0 < x < 2/3 and 2/3 < x < 1 separately because of the sign change of the inequality.
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When 0 < x < 2/3, we have 2/3 —x > 0 and the requirement is most stringent at x = 0 where we
require 2a/3 < 2 or a< 3. When 2/3 < x < 1, we can write the constraint asa(x— 2/3) > —2. In
this case, the constraint is most stringent at x = 1, where we must havea/3 > —2 or a > —6. Thus
our a complete expression for our requirements are

—-6<a<3 b=2-2a/3
Aswe see in the following plot, the shape of the PDF fy (x) varies greatly with the value of a.
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Problem 4.3.7
find the PDF of U by taking the derivative of Ry (u). The CDF and corresponding PDF are
0 u< -5 0 u< -5
(u+5)/8 —-5<u< -3 1/8 -5<u<-3
Fo(uy=<¢ 1/4 —3<u<3 fu(luy=¢ 0 —-3<u<s3
1/4+3(u—-3)/8 3<u<5 3/8 3<u<5
1 u>>5. 0 u>>5.

(@) The expectedvalueof U is

0 -3 5
E[U]/ ufy (U) du:/ 9du+/ 3 du
o 5 8 3 8

-3

u? 3?|°
= — + _—
16| ;. 16|,
——14+3=2
(b) The second moment of U is
00 73u2 53u2
2 2 _ hall htull
E[U ]/_mu fu(u)du_/_5 8du+ — du
T RTIE
T2, Bl
= 49/3

Thevariance of U isVar[U] = E[U?] — (E[U])? = 37/3.
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(c) Notethat 2V = e"2V Thisimpliesthat

1 24
u (Inuyy — = AIn2u _ <
[2au= [eraun ol 2

The expected value of 2V isthen

00 32U 5 u
E[zu}:/ 2“fU(u)du:/ 2d+/32

u |73 3.ould
= +
8In2| 5 8In2|;
2307
= 5esi = 13001

Problem 4.4.10

For n= 1, we havethefact E[X] = 1/A that is given in the problem statement. Now we assume that
E[X"1] = (n—1)!/A"L. To complete the proof, we show that this implies that E[X"] = n!/A".
Specifically, we write

E[X" = / X"\e Mdx
0

Now we use the integration by parts formula [udv = uv— [vdu with u = x" and dv = Ae ™ dx.
Thisimpliesdu = nxX"1dx and v= —e ™ so that

E [Xn] — _Xnef)\x

nX" e Mdx
0
= 0+;/ X" Ihe Mdx
0
_ E n—1
= )\E[X ]
By our induction hyothesis, E[X"!] = (n—1)! /A" ! which implies

E[X" = ni /A"

Problem 4.4.11

(8 Since fx (x) > 0and x > r over the entire integral, we can write
/ xfx (X) dx > / rfx (X) dx=rP[X >r]
r r
(b) We can write the expected value of X intheform

E[X] :/Orxfx (x) dx+/rwxfx (x) dx



Hence,
(PIX > 1] < /°°xfX (%) dx = E[X]—/Orxfx (%) dx

Allowing r to approach infinity yields

r

limrP[X>r] <E[X]—Ilim [ xfx(x) dx=E[X]—E[X]=0

r—o0 r—o0 0

SincerP[X >r] > 0for al r > 0, we must havelim;_. rP[X > r] = 0.

(c) We can use the integration by parts formula [ udv = uv— [vdu by defining u = 1 — Fx (x)
and dv = dx. Thisyields

/°°[1— P ()] dx = X[1— Fx(x)]\g°+/°°xfx (x) dx
0 0
By applying part (a), we now observe that

X[1—Fx (][5 = limr[1—Fx (r)] =0 = limrP[X > 1]

By part (b), limy_. rP[X > r] = 0 and thisimplies x[1 — Fx (x)]|3 = 0. Thus,

/w[l— P ()] dx — /°°><fX (%) dx = E[X]
0 0

Problem 4.5.6
We are given that there are 100, 000, 000 men in the United States and 23, 000 of them are at least 7
feet tall, and the heights of U.S men are independent Gaussian random variables with mean 5'10”.

(@) Let H denotethe heightininchesof aU.Smale. Tofind oy, welook at the fact that the prob-
ability that P[H > 84] is the number of men who are at least 7 feet tall divided by the total
number of men (the frequency interpretation of probability). Since we measure H in inches,
we have

23,000 7084
P[H > 84 ’ (7

Ox
Since d(—x) = 1— P(x) = Q(x),
Q(14/0x) =2.3-104
From Table 4.2, thisimplies 14/0x = 3.5 or ox = 4.
(b) The probability that arandomly chosen manis at least 8 feet tall is
96— 70

P[H > 96] = Q ( ) =Q(6.5)

Unfortunately, Table 4.2 doesn’t include Q(6.5), although it should be apparent that the prob-
ability isvery small. In fact, Q(6.5) = 4.0 x 1011,
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(c) First we need to find the probability that amanisat least 7'6”.
9070>

_ ~a.10-7 _
— ) =QB)~3.107 =

Although Table 4.2 stops at Q(4.99), if you' re curious, the exact valueis Q(5) = 2.87-1077.

Now we can begin to find the probability that no manisat least 7'6”. This can be modeled as
100,000,000 repetitions of a Bernoulli trial with parameter 1 — 3. The probability that no man
isatleast 776" is

P[H290]—Q<

(1 o B) 100,000,000 __ 9.4 x 10714
(d) Theexpected value of N isjust the number of trials multiplied by the probability that amanis
atleast 776",

E[N] = 100,000,000-p =30
Problem 4.6.8
good, that is, no foul occurs. The CDF of D obeys

Fo (y) = P[D <y|GJP[G] + P[D < y|G°|P[G]
Given the event G,
PID<y|G|=PX <y- 60 =1 ¥-60/10 (y> g0)

Of course, for y < 60, P[D <y|G] = 0. From the problem statement, if the throw is a foul, then
D =0. Thisimplies

P[D <y|G] = u(y)
where u(-) denotes the unit step function. Since P[G] = 0.7, we can write
Fo (y) = P[GJP[D <y|G] + P[G°]P[D <|G]

~f 0.3u(y) y < 60
~ | 0.3+0.7(1— e -60/10y y> 60

Another way to write thisCDF is
Fo (y) = 0.3u(y) 4 0.7u(y — 60) (1 — e~ y=60)/10)

However, when we take the derivative, either expression for the CDF will yield the PDF. However,
taking the derivative of thefirst expression perhaps may be ssimpler:

¢ [ 0.33(y) y < 60
p(y) = 0.07e~-60/10 v > g0

Taking the derivative of the second expression for the CDF is alittle tricky because of the product
of the exponential and the step function. However, applying the usual rule for the differentation of
aproduct does give the correct answer:

fo (y) = 0.35(y) +0.75(y — 60) (1 — e ¥~%9/1%) - 0.07u(y— 60)e~V~%)/10
— 0.35(y) + 0.07u(y — 60)e~¥~60)/10
The middle term &(y — 60)(1 — e V~69)/19) dropped out because at y — 60, e (V-69/10 — 1.
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Problem 4.6.9

Theprofessor isontimeand |l ecturesthefull 80 minuteswith probability 0.7. Thatis, P[T = 80] =
0.7. Likewise when the professor is more than 5 minutes late, the studentsleave and a 0 minute lec-
ture is observed. Since heislate 30% of the time and given that heis late, his arrival is uniformly
distributed between 0 and 10 minutes, the probability that thereis no lectureis

P[T = 0] = (0.3)(0.5) = 0.15

The only other possible lecture durations are uniformly distributed between 75 and 80 minutes, be-
cause the students will not wait longer then 5 minutes, and that probability must add to a total of
1-0.7—0.15=0.15. Sothe PDF of T can be written as

0.155(t) t=0

(1) = 0.03 75<7< 80
T 0.73(t—80) t=80
0 otherwise

Problem 4.7.14
We can prove the assertion by considering the cases where a > 0 and a < 0, respectively. For

the case where a > 0 we have

—b —b

Ry = PV <y =plx< Y] =R (17)

Therefore by taking the derivative we find that
1 y—b
fy(y)_afx<T> a>0
Similarly for the case when a < 0 we have
-b —b
Fv(y)—P[Ysy]—P[xzyT} —1FX<VT>

And by taking the derivative, we find that for negative a,

1 —b
fy (y) = 5 (%) a<o0

A valid expression for both positive and negative ais

fy (y) = |—;|fx (y%ab>

Therefore the assertion is proved.



Problem 4.7.15

Understanding this claim may be harder than completing the proof. Since 0 < F(x) < 1, we
know that 0 <U < 1. ThisimpliesR, (u) =0foru< O0and Ry (u) = 1 for u > 1. Moreover, since
F(x) isan increasing function, we can writefor 0 <u < 1,

Fu(u) =P[F(X) <u =P[X <F u)] =Fx (F(u))

Since Fx (x) = F(x), wehavefor0<u <1,

Hence the complete CDF of U is

That is, U isauniform [0, 1] random variable.

Problem 4.7.16
First, wemust verify that F~(u) isanondecreasing function. To show this, supposethat for u >
U, x=F~1(u)andx = F~(U). Inthiscase, u= F(x) and U = F(x'). Since F(x) isnondecreasing,

F(x) > F(x) impliesthat x > X. Hence, we can write
Fx (X) =P[F1(U) <x] =PlU < F(x)] = F(x)
Problem 4.8.3
Wis

1
() = e

(@ SinceW hasexpectedvaluep =0, fy (W) issymmetricaboutw= 0. HenceP|C] = P|W > 0] =
1/2. From Definition 4.15, the conditional PDF of W givenC is

fw (W) /P[C] weC 2e~W'/32/\/32m w>0
otherwise

fwe (W) = { 0 1o otherwise
(b) The conditional expected value of W givenC s

0 2 0 W
E/W|C :/ Wy (W dw:—/ we /32 gw
WIC] » wic (W) 2ot

Making the substitution v = w? /32, we obtain

3R o 32
E[W|C] = —/ eVdv= o2
32mJo Vv 3211



(c) The conditional second moment of W is
EW2(C] = /:wsz‘c (W) dw — 2/0°°wsz(w) dw
We observe that w? fyy (w) is an even function. Hence
EW3[C] = 2/0°°wsz(w) dw = /:vvsz(w) dw=E[W? =0%=16

Lastly, the conditional variance of W givenC is

Var [W|C] = E[W?|C] — (E[W|C])? = 16 - 32/mi=5.81

Problem 4.8.4

(&) To find the conditional moments, we first find the conditional PDF of T. The PDF of T is

()= { 1002 10
™™W=Yo otherwise

The conditioning event has probability
P[T > 0.02] = /0 ) dt= —e (7, —e 2
From Definition 4.15, the conditional PDF of T is

) t>0.02 { 100 100(t-0.02)  t > 0,02

— J PT>007 -
fT\T>0.02(t) {O otherwise 0 otherwise

The conditional mean of T is
E[T|T > 0.02] = / £(100)e~100t-002) gy
0.02
The substitution T =t — 0.02 yields

E[T|T >0.02] = H—OOZ )(100)e 19" dt

\\

H—OOZ fr (1) dt
ET+002} 0.03

(b) The conditional second moment of T is

E[TT >0.02] = / 2(100)e100t-0.02) gt
0.02



The substitution T =t — 0.02 yields

E[T?T > 0.02] T+ 0.02)%(100)e~ 1% gt

A
/ (1+0.02)2f7 (1) dt
=E[(T+0.02) ]
Now we can calculate the conditional variance.
Var [T|T > 0.02] = E[T?|T > 0.02] — (E[T|T > 0.02])?
= E[(T +0.02)?] — (E[T +0.02])?

= Var[T +0.02]
— Var[T] = 0.01



