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Problem 11.1.3
the occurrences of packets in error. It would seem that N

�
t � cannot be a renewal process because

the interarrival times seem to depend on the previous interarrival times. However, following a packet
error, the sequence of packets that are correct

�
c � or in error

�
e � up to and including the next error is

given by the tree

� � � � � � e0 � 9
c0 � 1 � � � � � � e

0 � 01

c0 � 99

� � � � � � e
0 � 01

c0 � 99

� X � 1 � X � 2 � X � 3

� � �
Assuming that sending a packet takes one unit of time, the time X until the next packet error has the
PMF

PX
�
x ��� 0 � 9 x � 1

0 � 001
�
0 � 99 � x 	 2 x � 2 
 3 
������

0 otherwise

Thus, following an error, the time until the next error always has the same PMF. Moreover, this time
is independent of previous interarrival times since it depends only on the Bernoulli trials following a
packet error. It would appear that N

�
t � is a renewal process; however, there is one additional compli-

cation. At time 0, we need to know the probability p of an error for the first packet. If p � 0 � 9, then
X1, the time until the first error, has the same PMF as X above and the process is a renewal process.
If p �� 0 � 9, then the time until the first error is different from subsequent renewal times. In this case,
the process is a delayed renewal process.

Problem 11.1.4
tricky. Just as in the solution to Problem 11.1.3, its unclear in what mode the system starts at

time 0. For the moment, we ignore this problem and consider what happens immediately following
an arrival, that is, the arrival of a packet in error following a correct packet. In the following diagram,
we will use c and e to denote correct packets and error packets while E will mark the arrivals of a
first packet in error following a correct packet. The basic sequence we will observe resembles�� cccE ee �� e

J 	 1 err

ccc �� c
K 	 1 ok

E ee �� e
J 	 1 err

ccc �� c
K 	 1 ok

E ��
Following the arrival of a packet in error, we will need to observe J packets to see the first correct
packet and then we will need to see K additional packets to see the first error packet following a
correct packet. The PMF of J can be deduced from the following tree which shows the sequence of
packets that are correct

�
c � or in error

�
e � up to and including the first correct packet.
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� � � � � � c
0 � 1

e0 � 9 � � � � � � c
0 � 1

e0 � 9 � � � � � � c
0 � 1

e0 � 9
� J � 1 � J � 2 � J � 3

� � �
Assuming that sending a packet takes one unit of time, the time J until the first correct packet has
the PMF

PX
�
x ��� �

0 � 9 � j 	 1 �
0 � 1 � j � 1 
 2 
������

0 otherwise

Following a correct packet, we will observe K packets to see the next error. This is shown in the
following tree:

� � � � � � e
0 � 01

c0 � 99

� � � � � � e
0 � 01

c0 � 99

� � � � � � e
0 � 01

c0 � 99

� K � 1 � K � 2 � K � 3

� � �
The corresponding PMF of K is

PK
�
k ��� �

0 � 99 � k 	 1 �
0 � 01 � k � 1 
 2 
 3 
������

0 otherwise

The time between arrivals is the random variable

X ��� J � K

Following an arrival, the number of packets until the next arrival is always a random variable X � .
Moreover, J and K are independent of the packet errors that occurred up to the previous arrival. Thus
N � � t � is at the very least a delayed renewal process. Furthermore, if we know that at time t � 1, the
error probability of the first packet is 0 � 9, then we know that the N � � t � process is in fact a renewal
process.

Although finding the exact PMF of X � is not very difficult, note that we do not even need to find
it to make the above argument.

Problem 11.2.5
We start with the case when t � 2. When each service time is equally likely to be either 1 minute

or 2 minutes, we have the following situation. Let M1 denote those customers that arrived in the
interval

�
t � 1 
 1� . All M1 of these customers will be in the bank at time t and M1 is a Poisson random

variable with mean λ.
Let M2 denote the number of customers that arrived during

�
t � 2 
 t � 1� . Of course, M2 is Poisson

with expected value λ. We can view each of the M2 customers as flipping a coin to determine whether
to choose a 1 minute or a 2 minute service time. Only those customers that chooses a 2 minute service
time will be in service at time t. Let M�2 denote those customers choosing a 2 minute service time. It
should be clear that M�2 is a Poisson number of Bernoulli random variables. Theorem 11.5 verifies
that using Bernoulli trials to decide whether the arrivals of a rate λ Poisson process should be counted
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yields a Poisson process of rate pλ. A consequence of this result is that a Poisson number of Bernoulli
(success probability p) random variables has Poisson PMF with mean pλ. In this case, M�2 is Poisson
with mean λ � 2. Moreover, the number of customers in service at time t is N

�
t ��� M1 � M�2. Since

M1 and M�2 are independent Poisson random variables, their sum N
�
t � also has a Poisson PMF. This

was verified in Example 7.12. Hence N
�
t � is Poisson with mean E � N �

t ����� E � M1 ��� E �M�2 ��� 3λ � 2.
The PMF of N

�
t � is

PN � t � � n ��� �
3λ � 2 � ne 	 3λ� 2 � n! n � 0 
 1 
 2 
������

0 otherwise
�
t � 2 �

Now we can consider the special cases arising when t � 2. When 0 � t � 1, every arrival is still in
service. Thus the number in service N

�
t � equals the number of arrivals and has the PMF

PN � t � � n ��� �
λt � ne 	 λt � n! n � 0 
 1 
 2 
������

0 otherwise
�
0 � t � 1 �

When 1 � t � 2, let M1 denote the number of customers in the interval
�
t � 1 
 t � . All M1 customers

arriving in that interval will be in service at time t. The M2 customers arriving in the interval
�
0 
 t � 1�

must each flip a coin to decide one a 1 minute or two minute service time. Only those customers
choosing the two minute service time will be in service at time t. Since M2 has a Poisson PMF with
mean λ

�
t � 1 � , the number M�2 of those customers in the system at time t has a Poisson PMF with

mean λ
�
t � 1 ��� 2. Finally, the number of customers in service at time t has a Poisson PMF with mean

E � N �
t � ��� E � M1��� E � M�2��� λ � λ

�
t � 1 ��� 2. Hence, the PMF of N

�
t � becomes

PN � t � � n �!� �
λ
�
t � 1 ��� 2 � ne 	 λ � t " 1 �#� 2 � n! n � 0 
 1 
 2 
������

0 otherwise
�
1 � t � 2 �

Problem 11.2.6
process is not a renewal process. However, before we go into the details, it is perhaps better

to explain why. Suppose λ0 $ λ1. In this case, type 0 arrivals occur much more frequently than
type 1 arrivals. As a consequence, we are likely to see a sample path with alternating short and long
interarrival times. If we have observed a sequence of interarrival times that are short, long, short,
long, then it becomes possible for us to guess whether the next interarrival time is short or long.
Hence, we can use the previous interarrival times to deduce something about the current interarrival
time. This would suggest that the interarrival times are dependent which would imply the alternating
process is neither a renewal process nor a Poisson process. Verifying this intuition is complicated
because the first arrival can be of either type. For i � 0 
 1, let Ai denote the event that the first arrival
is of type i. Since the two processes are Poisson processes, Theorem 11.6 says that

P � A0 ��� λ0

λ0 � λ1
P � A1 ��� λ1

λ0 � λ1

In addition, given we learn the type of the first arrival, then subsequent interarrival times are condi-
tionally independent because we know in each interval what type of arrival that we are looking for
(type 0 or type 1) and because of the memorylessness of each Ni

�
t � process. In particular
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% If A0 occurs and the first arrival is type 0, then X2 will be exponential with parameter λ1, X3

will be exponential with parameter λ0, X4 will be exponential with parameter λ1, and so on.
The conditional joint PDF of the first three arrivals will be

fX1 & X2 & X3 ' A0

�
x1 
 x2 
 x3 �!� fX1 ' A0

�
x1 � fX2 ' A0

�
x2 � fX3 ' A0

�
x3 �� fX1 ' A0

�
x1 � λ1e 	 λ1x2λ0e 	 λ0x3

% If A1 occurs and the first arrival is type 1, then X2 will be exponential with parameter λ0, X3

will be exponential with parameter λ1, X4 will be exponential with parameter λ0, and so on.
The conditional joint PDF of the first three arrivals will be

fX1 & X2 & X3 ' A1

�
x1 
 x2 
 x3 �!� fX1 ' A1

�
x1 � fX2 ' A1

�
x2 � fX3 ' A1

�
x3 �� fX1 ' A1

�
x1 � λ0e 	 λ0x2λ1e 	 λ1x3

To finish the verification that X1, X2, and X3 are dependent, we must find the conditional PDFs fX1 ' A0

�
x1 �

and fX1 ' A1

�
x1 � . For i � 0 
 1, let Yi denote the arrival time of the first type i arrival. Since each process

Ni
�
t � is Poisson, for x � 0,

P �Yi ( x��� e 	 λix

In addition, note that X1 � min
�
Y0 
 Y1 � and that A0 �*) Y0 � Y1 + . This implies

FX1 ' A0

�
x1 �,� 1 � P � X1 ( x1 - A0 �� 1 � P � min

�
Y0 
 Y1 � ( x1 
 A0 �.� P � A0 �� 1 � P �Y0 ( x1 
 Y1 ( x1 
 Y0 � Y1 �.� P � A0 �� 1 � P � x1 � Y0 � Y1 �.� P � A0 �

Thus we need to calculate

P � x1 � Y0 � Y1 ���0/ ∞

x1

/ ∞

y0

fY0

�
y0 � fY1

�
y1 � dy1 dy0

� / ∞

x1

λ0e 	 λ0y0 / ∞

y0

λ1e 	 λ1y1 dy1 dy0

�0/ ∞

x1

λ0e 	1� λ0 " λ1 � y0 dy0

� λ0

λ0 � λ1
e 	2� λ0 " λ1 � x1 � P � A0� e 	1� λ0 " λ1 � x1

This implies

FX1 ' A0

�
x1 �,� 1 � e 	2� λ0 " λ1 � x1

The same approach can be used to show that

FX1 ' A1

�
x1 �,� 1 � e 	2� λ0 " λ1 � x1
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In short, the time of the first arrival is independent of whether that arrival is type 0 or type 1. Although
this may seem surprising, it makes sense when we consider the events X1 ( x1 and the event A0.
Given we observe that X1 ( x1, we know that neither N0

�
t � nor N1

�
t � had an arrival by time x1. Given

we know this fact, the memoryless property of the Poisson process tells us that the probability the
type 0 arrival will occur first is still P � A0� , independent of how long we have already waited. Finally,
we see that

FX1

�
x1 ��� FX1 ' A0

�
x1 � P � A0 ��� FX1 ' A1

�
x1 � P � A1 ��� 1 � e 	2� λ0 " λ1 � x1

That is, FX1 ' A0

�
x1 ��� FX1 ' A1

�
x1 ��� FX1

�
x1 � . Furthermore, by taking derivatives, we have

fX1

�
x1 ��� fX1 ' A0

�
x1 ��� fX1 ' A1

�
x1 �,� �

λ0 � λ1 � e 	2� λ0 " λ1 � x1

Finally, we can evaluate the joint PDF of X1, X2, and X3.

fX1 & X2 & X2

�
x1 
 x2 
 x2 ��� fX1 & X2 & X3 ' A0

�
x1 
 x2 
 x3 � P � A0 �3� fX1 & X2 & X3 ' A1

�
x1 
 x2 
 x3 � P � A1 �� fX1 ' A0

�
x1 � fX2 ' A0

�
x2 � fX3 ' A0

�
x3 � P � A0�� fX1 ' A1

�
x1 � fX2 ' A1

�
x2 � fX3 ' A1

�
x3 � P � A1 �

For x1 
 x2 
 x3 nonnegative, substituting the various conditional PDFs yields

fX1 & X2 & X2

�
x1 
 x2 
 x2 �!� λ0λ1e 	2� λ0 " λ1 � x1 λ0e 	 λ1x2 	 λ0x3 � λ1e 	 λ0x2 	 λ1x3

We see that the joint PDF fX1 & X2 & X3

�
x1 
 x2 
 x3 � does not factor into a product of marginal PDFs. Hence

the interarrival times X0 
 X1 
������ are not independent and the N
�
t � process is not a renewal process.

It is possible to identify an embedded renewal process. Let N � � t � denote the even numbered ar-
rivals of N

�
t � . Also, let X �1 
 X �2 
������ denote interarrival times of the N � � t � process. If Yi denotes an

arbitrary interarrival process of the Ni
�
t � process, then some thought will make the following obser-

vations clear.% The first arrival of the N � � t � process occurs exactly when each process Ni
�
t � has had an arrival.

Thus,

X �1 � max
�
Y0 
 Y1 �% After the first arrival of the N � � t � process, we must wait for either

– One arrival of the N0
�
t � process followed by one arrival of the N1

�
t � process

– One arrival of the N1
�
t � process followed by one arrival of the N0

�
t � process

The order in which we wait for these arrivals will depend on whether the very first arrival was
type 0 or type 1. Nevertheless, for n ( 1,

X �n � Y0 � Y1

That is, X �2 
 X �3 
������ are identical random variables.% Because N0
�
t � and N1

�
t � are Poisson processes, the interarrival times X �1X �2 
������ are independent

random variables

From these facts, we can conclude that N � � t � is a delayed renewal process.
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Problem 11.3.3

(a) We can define a renewal process such that a renewal occurs whenever we produce an interme-
diate digit. Let Y1 
 Y2 
������ denote the inter-renewal times. Note that Y has a truncated geometric
PMF. For this problem, its easier to work with the complementary CDF of Y . In particular,

P �Y ( j��� 1 j � 0
q j j � 0 
 1 
������4
 7
0 otherwise

The expected value of Y is

E �Y ��� ∞

∑
j � 0

P �Y ( j��� 7

∑
j � 0

q j � 1 � q8

1 � q

Since one intermediate digit is produced in each renewal period,

α � lim
t 5 ∞

N
�
t �

t
� 1

E �Y � � 1 � q
1 � q8

(b) The value of each intermediate digit produced can be viewed as an independent trial. Let Rk

denote the number of code bits produced by the kth intermediate digit. Note that R � 1 if
intermediate digit 8 is produced; otherwise, R � 4. Since the probability that intermediate
digit 8 is produced is q8,

β � E � R��� 4
�
1 � q8 �6� q8 � 4 � 3q8

Note that

M̂
�
k ��� R1 � �� � Rk

Since R1 
 R2 
������ is an iid random sequence, the strong law of large number says that

lim
k 5 ∞

M̂
�
k �

k
� E � R��� 4 � 3q8 w.p. 1

(c) Now consider a renewal reward process in which renewals occur whenever an intermediate
digit is produced and the reward equals the number of code bits produced. That is, the sequence
of

�
Yk 
 Rk � are a renewal reward process. The longterm rate of code bits per unit time is

lim
t 5 ∞

M
�
t �

t
� E � R�

E �Y � � αβ � �
1 � q � � 4 � 3q8 �

1 � q8

(d) The RLL coding compresses the bit stream if limt 5 ∞ M
�
t ��� t � 1. This requires that

4 � 4q � 2q8 � 3q9 � 1

Plotting the left side function of q shows that q ( 0 � 777 ensures that RLL coding compresses
the sequence.
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Problem 11.3.4

(a) We can define a renewal reward process such that a renewal occurs whenever the source pro-
duces a 1. Over a renewal period, the reward R equals the number of intermediate digits pro-
duced. The time X between renewals is equal to the number of source bits produced during the
renewal period. Note that X ( j iff the first j source bits after a renewal are all zero. Hence,

P � X ( j��� 1 j � 0
pq j 	 1 j � 1 
 2 
������

and

E � X ��� ∞

∑
j � 0

P � X ( j��� 1 � p
1 � q

By similar reasoning, R ( r iff the the first 8r source bits are all zero. For example, R ( 1, if
the first 8 digits after the renewal are all zero.

P � R ( r��� 1 r � 0
pq8r 	 1 r � 1 
 2 
������

This implies

E � R��� ∞

∑
r � 0

P � R ( r��� 1 � pq7

1 � q8

By the renewal reward theorem,

α � lim
t 5 ∞

N
�
t �

t
� E � R�

E � X � � �
1 � q � � 1 � q8 � pq7 ��
1 � q8 � � 1 � q � p �

(b) Consider a renewal reward process in which one unit of time is required to produce one in-
termediate digit. Renewals occur whenever one of the intermediate digits 0 
 1 
�������
 7 is pro-
duced. Hence, a renewal period produces a sequence of intermediate digits 88 �� 8x where
x 78) 0 
 1 
������6
 7 + . In this case, the expected time between renewals equals E � R� , as defined in
part (a). Over a renewal period, the reward C equals the number of code bits produced. Note
that the first R � 1 intermediate digits produce

�
R � 1 � code bits. For the final intermediate

digit, 4 code bits are produced. Hence C � R � 3. Moreover,

β � lim
k 5 ∞

M̂
�
k �

k
� E �C�

E � R� � E � R�3� 3
E � R�

(c) As in part (a), we consider each time a 1 is produced by the source to be a renewal. The time
between renewals X is as defined in part (a). We define a reward as the number of code bits
C� produced during a renewal period. As explained in part (b), if R intermediate digits are
produced, then C� � R � 3 code bits are produced. In this case, the renewal reward theorem
implies

lim
t 5 ∞

M
�
t �

t
� E �C� �

E � X � � E � R�3� 3
E � X � � αβ
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(d) The short answer is that the procedure compresses the source sequence when

lim
t 5 ∞

M
�
t ��� t � αβ � 1

This compression is significant when long sequences of zeroes are typical. This occur when
p and q are close to 1. This answer is a little too simple because it doesn’t account for the fact
even if p is not close to 1, a value of q that is very close to 1 can result in compression. The
condition αβ � 1 is the same as E � R��� 3 � E � X � . In terms of p and q, we have

4 � pq7

1 � q8 � 1 � p
1 � q

This can be simplified to

p ( 3
�
1 � q8 � � 1 � q �

1 � q7 � 3
�
1 � q � h �

q �
where h

�
q �9� �

1 � q8 ��� �
1 � q7 � . We will show that h

�
q � is an increasing function such that

1 � h
�
q ��� 8 � 7 for 0 � q � 1. Note that we can write h

�
q � as

h
�
q �!� 1 � �

1 � q � q7

1 � q7

Since 1 � q7 � �
1 � q � � 1 � q � q2 � �� � q6 � , we can write

h
�
q ��� 1 � q7

1 � q � q2 � �� � q6 � 1 � 1

∑7
i � 1 1 � qi

Since 1 � qi is a decreasing function in q for all i � 1, ∑7
i � 1 1 � qi is a decreasing function and

h
�
q � is an increasing function. Thus, for 0 � q � 1,

1 � h
�
0 �!� h

�
q ��� h

�
1 �!� 8 � 7

Thus a necesssary condition for compression is p ( 3
�
1 � q � . A sufficient condition for com-

pression is p ( 24
�
1 � q ��� 7. This implies that if q � 2 � 3 then we cannot have any compression,

no matter what the value of p.

Problem 11.4.2
fact by fact to identify the information given.% “ ����� each read or write operation reads or writes an entire file and that files contain a geometric

number of sectors with mean 50.”

This statement says that the length L of a file has PMF

PL
�
l �!� �

1 � p � l 	 1 p l � 1 
 2 
������
0 otherwise

with p � 1 � 50 � 0 � 02. This says that when we write a sector, we will write another sector with
probability 49 � 50 � 0 � 98. In terms of our Markov chain, if we are in the write state, we write
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another sector and stay in the write state with probability P22 � 0 � 98. This fact also implies
P20 � P21 � 0 � 02.

Also, since files that are read obey the same length distribution,

P11 � 0 � 98 P10 � P12 � 0 � 02

% “Further, suppose idle periods last for a geometric time with mean 500.”

This statement simply says that given the system is idle, it remains idle for another unit of time
with probability P00 � 499 � 500 � 0 � 998. This also says that P01 � P02 � 0 � 002.% “After an idle period, the system is equally likely to read or write a file.”

Given that at time n, Xn � 0, this statement says that the conditional probability that

P � Xn " 1 � 1 - Xn � 0 
 Xn " 1 �� 0��� P01

P01 � P02
� 0 � 5

Combined with the earlier fact that P01 � P02 � 0 � 002, we learn that

P01 � P02 � 0 � 001

% “Following the completion of a read, a write follows with probability 0 � 8.”

Here we learn that given that at time n, Xn � 1, the conditional probability that

P � Xn " 1 � 2 - Xn � 1 
 Xn " 1 �� 1��� P12

P10 � P12
� 0 � 8

Combined with the earlier fact that P10 � P12 � 0 � 02, we learn that

P10 � 0 � 004 P12 � 0 � 016

% “However, on completion of a write operation, a read operation follows with probability 0 � 6.”

Now we find that given that at time n, Xn � 2, the conditional probability that

P � Xn " 1 � 1 - Xn � 2 
 Xn " 1 �� 2��� P21

P20 � P21
� 0 � 6

Combined with the earlier fact that P20 � P21 � 0 � 02, we learn that

P20 � 0 � 008 P21 � 0 � 012

The complete tree is

: ; <
=?> @A@CB D?E FCG H?I JCKL?M LALAN O?P OAQAR

S?T SASVU W?X WAY[Z\?] \A\A^_?` _A_?a
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Problem 11.6.2
state probabilities. By Theorem 11.10, the probability of state k at time n is

pk
�
n ��� ∞

∑
i � 0

pi
�
n � 1 � Pik

Since Pik � q for every state i,

pk
�
n ��� q

∞

∑
i � 0

pi
�
n � 1 ��� q

Thus for any time n ( 0, the probability of state k is q.

Problem 11.7.3
states j and i communicate, then sometimes when we go from state j back to state j, we will pass

through state i. If E Ti j � ∞, then on those occasions we pass through i, the expectred time to go
to back to j will be infinite. This would suggest E Tj j � ∞ and thus state j would not be positive
recurrent. Using a math to prove this requires a little bit of care.

Suppose E Ti j � ∞. Since i and j communicate, we can find n, the smallest nonnegative integer

such that P � n �
ji ( 0. Given we start in state j, let Gi denote the event that we go through state i on our

way back to j. By conditioning on G j,

E Tj j � E Tj j - Gi P � Gi �b� E Tj j - Gc
i P � Gc

i �
Since E Tj j - Gc

i P � Gc
i ��� 0,

E Tj j � E Tj j - Gi P � Gi �
Given the event Gi, Tj j � Tji � Ti j. This implies

E Tj j - Gi � E Tji - Gi � E Ti j - Gi � E Ti j - Gi

Since the random variable Ti j assumes that we start in state i, E Ti j - Gi � E Ti j . Thus E Tj j - Gi �
E Ti j . In addition, P � Gi �4� P � n �

ji since there may be paths with more than n hops that take the system
from state j to i. These facts imply

E Tj j � E Tj j - Gi P � Gi��� E Ti j P � n �
ji � ∞

Thus, state j is not positive recurrent, which is a contradiction. Hence, it must be that E Ti j � ∞.

Problem 11.8.3

0 front teller busy, rear teller idle

1 front teller busy, rear teller busy

2 front teller idle, rear teller busy

We will assume the units of time are seconds. Thus, if a teller is busy one second, the teller will
become idle in th next second with probability p � 1 � 120. The Markov chain for this system is
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We can solve this chain very easily for the stationary probability vector π. In particular,

π0 � �
1 � p � π0 � p

�
1 � p � π1

This implies that π0 � �
1 � p � π1. Similarly,

π2 � �
1 � p � π2 � p

�
1 � p � π1

yields π2 � �
1 � p � π1. Hence, by applying π0 � π1 � π2 � 1, we obtain

π0 � π2 � 1 � p
3 � 2p

� 119 � 358

π1 � 1
3 � 2p

� 120 � 358

The stationary probability that both tellers are busy is π1 � 120 � 358.

Problem 11.9.1
Equivalently, we can prove that if Pii �� 0 for some i, then the chain cannot
be periodic. So, suppose for state i, Pii ( 0. Since Pii � P � 1 �

ii , we see that the

largest d that divides n for all n such that P � n �
ii ( 0 is d � 1. Hence, state i is

aperiodic and thus the chain is aperiodic.
The converse that Pii � 0 for all i implies the chain is periodic is false. As a
counterexample, consider the simple chain on the right with Pii � 0 for each
i. Note that P � 2 �

00 ( 0 and P � 3 �
00 ( 0. The largest d that divides both 2 and 3 is

d � 1. Hence, state 0 is aperiodic. Since the chain has one communicating
class, the chain is also aperiodic.

�
� �

�?� ��?� ��?� ��?� ��?� �
�?� �

Problem 11.10.1
in each state i, the tiger spends an exponential time with parameter λi. When we measure time

in hours,

λ0 � q01 � 1 � 3 λ1 � q12 � 1 � 2 λ2 � q20 � 2

The corresponding continous time Markov chain is shown below:

�
� �

��
� � ¡
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The state probabilities satisfy

1
3

p0 � 2p2
1
2

p1 � 1
3

p0 p0 � p1 � p2 � 1

The solution is

p0 p1 p2 � 6 � 11 4 � 11 1 � 11

Problem 11.11.7
Since both types of calls have exponential holding times, the number of calls in the system can

be used as the system state. The corresponding Markov chain is

¢¤£.¥ ¦§¤¨ª©« �+ ¬ �+  �® �̄ �°
± ² ³{´ µ ¶#·¹¸»º ¼�½?¾ ¿

When the number of calls, n, is less than c � r, we admit either type of call and qn & n " 1 � λ � h. When
n � c � r, we block the new calls and we admit only handoff calls so that qn & n " 1 � h. Since the service
times are exponential with an average time of 1 minute, the call departure rate in state n is n calls per
minute. Theorem 11.29 says that the stationary probabilities pn satisfy

pn � λ � h
n

pn 	 1 n � 1 
 2 
�������
 c � r

λ
n

pn 	 1 n � c � r � 1 
 c � r � 2 
�������
 c
This implies

pn �
�
λ � h � n

n!
p0 n � 1 
 2 
������4
 c � r�

λ � h � c 	 rλn 	2� c 	 r �
n!

p0 n � c � r � 1 
 c � r � 2 
�������
 c
The requirement that ∑c

n � 1 pn � 1 yields

p0

c 	 r

∑
n � 0

�
λ � h � n

n!
� �

λ � h � c 	 r
c

∑
n � c 	 r " 1

λn 	1� c 	 r �
n!

� 1

Finally, a handoff call is dropped if and only if a new call finds the system with c calls in progress.
The probability that a handoff call is dropped is

P � H ��� pc � �
λ � h � c 	 rλr

c!
p0 � �

λ � h � c 	 rλr � c!

∑c 	 r
n � 0

� λ " h � n

n! � λ " h
λ

c 	 r
∑c

n � c 	 r " 1
λn

n!
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