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Problem 11.1.3

the occurrences of packetsin error. 1t would seem that N(t) cannot be arenewal process because
theinterarrival times seemto depend on the previousinterarrival times. However, following apacket
error, the sequence of packetsthat are correct (c) or in error (e) up to and including the next error is
given by the tree

0.9 e oX=1 0.01 e eX=2 0.01 e oX=3

C C

0.1 0.99 0.99

Assuming that sending a packet takes one unit of time, the time X until the next packet error hasthe
PMF

0.9 x=1
Px (X) = 0.001(0.99)*2 X=2,3,...
0 otherwise

Thus, following an error, the time until the next error always has the same PMF. Moreover, thistime
isindependent of previousinterarrival times sinceit dependsonly onthe Bernoulli trialsfollowing a
packet error. It would appear that N(t) isarenewal process; however, thereis one additional compli-
cation. At time 0, we need to know the probability p of an error for thefirst packet. If p= 0.9, then
X1, thetime until thefirst error, has the same PMF as X above and the processis arenewal process.
If p=£ 0.9, then thetime until thefirst error is different from subsequent renewal times. In this case,
the processis adelayed renewal process.

Problem 11.1.4

tricky. Just as in the solution to Problem 11.1.3, its unclear in what mode the system starts at
time 0. For the moment, we ignore this problem and consider what happens immediately following
anarrival, thatis, thearrival of apacketin error following acorrect packet. Inthefollowing diagram,
we will use ¢ and e to denote correct packets and error packets while E will mark the arrivals of a
first packet in error following a correct packet. The basic sequence we will observe resembles

...CccEee---eccc---cEee---eccc---cE---
e~ e Y~ ——
J—ler K—1ok J—1ler K-—1o0k

Following the arrival of a packet in error, we will need to observe J packets to see the first correct
packet and then we will need to see K additional packets to see the first error packet following a
correct packet. The PMF of J can be deduced from the following tree which shows the sequence of
packets that are correct (c) or in error (e) up to and including the first correct packet.



01 C oJ=1 C eJ=2 C ¢J=3

0.1 0.1

0.9 0.9 0.9

Assuming that sending a packet takes one unit of time, the time J until the first correct packet has
the PMF

[ (09701 j=12,...
Px () = { 0 otherwise

Following a correct packet, we will observe K packets to see the next error. Thisis shown in the
following tree:

0.01 e eK=1 0.01 € oK=2 0.01 € oK=3

099 ¢ 099 °© 099 ¢
The corresponding PMF of K is
[ (0.99%1(0.01) k=1,23,...
P (k) = { 0 otherwise

The time between arrivalsis the random variable
X'=J+K

Following an arrival, the number of packets until the next arrival is aways a random variable X'.
Moreover, J and K areindependent of the packet errorsthat occurred up to the previousarrival. Thus
N'(t) isat the very least a delayed renewal process. Furthermore, if we know that at timet = 1, the
error probability of the first packet is 0.9, then we know that the N'(t) processisin fact arenewal
process.

Although finding the exact PMF of X’ is not very difficult, note that we do not even need to find
it to make the above argument.

Problem 11.2.5

We start with the casewhent > 2. When each servicetimeisequally likely to be either 1 minute
or 2 minutes, we have the following situation. Let My denote those customers that arrived in the
interval (t—1,1]. All M1 of these customerswill bein thebank at timet and M; isaPoisson random
variable with mean A.

Let M, denote the number of customersthat arrived during (t — 2,t — 1]. Of course, M isPoisson
with expected value A. We can view each of the M, customersasflipping acoin to determinewhether
to chooseal minuteor a2 minuteservicetime. Only those customersthat choosesa2 minute service
timewill bein serviceat timet. Let M, denote those customers choosing a2 minute servicetime. It
should be clear that M5 is a Poisson number of Bernoulli random variables. Theorem 11.5 verifies
that using Bernoulli trialsto decidewhether the arrivalsof arate A Poisson process should be counted
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yieldsaPoisson processof rate pA. A consequence of thisresult isthat aPoisson number of Bernoulli
(success probability p) random variables has Poisson PMF with mean pA. Inthiscase, M5 isPoisson
with mean A /2. Moreover, the number of customersin service at timet isN(t) = M1 + M5. Since
M; and M}, are independent Poisson random variables, their sum N(t) also has a Poisson PMF. This
was verified in Example 7.12. Hence N(t) is Poisson with mean E[N(t)] = E[M;] + E[M5] = 3A/2.
The PMF of N(t) is

(3\/2)"e2/nl n=0,1,2,...
P (= { 0 otherwise (t=2)

Now we can consider the special casesarisingwhent < 2. When 0 <t < 1, every arrival is still in
service. Thus the number in service N(t) equals the number of arrivals and has the PMF

(A)"e™M/nl n=0,12,...
Pay () = { 0 otherwise (O<t<1)

When 1 <t < 2, let M; denote the number of customersin the interval (t — 1,t]. All My customers
arrivinginthat interval will bein serviceat timet. The M, customersarrivingintheinterval (0,t — 1]
must each flip a coin to decide one a 1 minute or two minute service time. Only those customers
choosing the two minute servicetime will bein service at timet. Since M, has a Poisson PMF with
mean A(t — 1), the number M5, of those customersin the system at timet has a Poisson PMF with
mean A(t — 1) /2. Finally, the number of customersin serviceat timet has a Poisson PMF with mean
E[N(t)] = E[M4] + E[M}] = A+ A(t —1)/2. Hence, the PMF of N(t) becomes

[ Mt+1)/2"eMHD2/n n=0,1,2,...
Py (M) = { 0 otherwise (1st<2)

Problem 11.2.6

process is not a renewal process. However, before we go into the details, it is perhaps better
to explain why. Suppose Ap > A;. In this case, type O arrivals occur much more frequently than
type 1 arrivals. Asaconseguence, we are likely to see asample path with alternating short and long
interarrival times. If we have observed a sequence of interarrival times that are short, long, short,
long, then it becomes possible for us to guess whether the next interarrival time is short or long.
Hence, we can use the previousinterarrival times to deduce something about the current interarrival
time. Thiswould suggest that theinterarrival timesare dependent which would imply the alternating
process is neither a renewal process nor a Poisson process. Verifying this intuition is complicated
becausethefirst arrival can be of either type. Fori = 0,1, let A; denote the event that thefirst arrival
isof typei. Since the two processes are Poisson processes, Theorem 11.6 says that

Ao

P[Ao] = Aot Ay P[A]

N Ao+A

In addition, given we learn the type of thefirst arrival, then subsequent interarrival times are condi-
tionally independent because we know in each interval what type of arrival that we are looking for
(type O or type 1) and because of the memorylessness of each N;(t) process. In particular



e If Ag occurs and the first arrival is type 0, then X, will be exponential with parameter A1, X3
will be exponential with parameter Ag, X4 will be exponential with parameter A1, and so on.
The conditional joint PDF of thefirst three arrivalswill be

fxl,xz,xg\Ao (X1,X2,%3) = fxl\Ao (1) fXg\Ao (%) fxg\Ao (x3)
= Ty, a, (Xe) Ag€ 2N ge Ho%e

e If A; occurs and the first arrival istype 1, then X, will be exponential with parameter Ag, X3
will be exponential with parameter A1, X4 will be exponential with parameter Ao, and so on.
The conditional joint PDF of thefirst three arrivalswill be

fxl,XZ,Xg‘Al (X1>X27 X3) - fxl‘Al (Xl) fXZ‘Al (Xz) fX3‘A1 (X3)
= fy,ja, (X) Aog XN 8 M

Tofinishtheverificationthat Xy, X, and X3 are dependent, we must find the conditional PDFs fy, |, (X1)
and fy |a, (x1). Fori=0,1,let; denotethearrival timeof thefirst typei arrival. Since each process
N;(t) is Poisson, for x > 0,

PlY, > X = e
In addition, note that X; = min(Yp, Y1) and that Ag = {Yp < Y1}. Thisimplies

Fruia, (%) = 1—P[Xq > X1|Ag]
P[min(Yo,Y1) > X1, A0]/P[A]
P[YO > Xl,Y]_ > Xl,YQ < Yl]/P[Ao]

Thus we need to calculate

Pxi<Yo<Yi] = / / fy, (Yo) fv; (Y1) dy1dyo

X1 JYo

— / Ao % | A dy; dyo
X1 Yo

— /oo )\Oe*O\o-i-?\l)YO dyo
X1

Ao

— 70 aRotM)x —(Ao+A1)x
= € =P|Ag)e
Ao+A1 [AO]

Fxl\Ao (x1)=1— e (MotA)x
The same approach can be used to show that

Fja, (X) = 1— e (ot



Inshort, thetimeof thefirst arrival isindependent of whether that arrival istype 0 or type 1. Although
this may seem surprising, it makes sense when we consider the events X; > x; and the event Ag.
Givenweobservethat X; > x;, weknow that neither No(t) nor Ny (t) had an arrival by timex;. Given
we know this fact, the memoryless property of the Poisson process tells us that the probability the
type O arrival will occur firstisstill P[Ag], independent of how long we have aready waited. Finaly,
we see that

P (1) = Fgja, (%1) P[] + Fya, (x0) P[] = 1 g Rothu
That is, Fx,a, (X1) = Fyqja, (X1) = Fx, (X1). Furthermore, by taking derivatives, we have

i, () = fyja (Xa) = i, (1) = Ao+ Ag)e Potha
Finally, we can evaluate the joint PDF of X4, X5, and Xs.
Fxu.Xo, % (X1 X2, X2) = Ty 3, X180 (X15X2,X3) P[Ao] + T, x, x5/, (X1, %2, X3) P[Aq]
= iy 1a0 (X1) T8 (X2) T8, (X3) P[A]
+ Fxoa, (%) Fxoja, (X2) Fxgja, (X3) P[A]

For x4, X2, X3 honnegative, substituting the various conditional PDFsyields
0% (X1, X0, X0) = Aohge o ek (METMXHO)@ + 7\167)‘0)(27)‘1)(3)

We seethat thejoint PDF fx, x, x, (X1, X2, X3) does not factor into a product of marginal PDFs. Hence
the interarrival times Xo, X1, ... are not independent and the N(t) processis not a renewal process.

It is possible to identify an embedded renewal process. Let N'(t) denote the even numbered ar-
rivals of N(t). Also, let X{,XJ.... denote interarrival times of the N'(t) process. If Y; denotes an
arbitrary interarrival process of the N;(t) process, then some thought will make the following obser-
vations clear.

e Thefirstarrival of theN'(t) process occurs exactly when each process N; (t) hashad an arrival.
Thus,

Xi = maX(YOle)
o After thefirst arrival of the N'(t) process, we must wait for either

— Onearrival of the Ny(t) process followed by one arrival of the Ny (t) process
— Onearrival of the Ny (t) process followed by one arrival of the Np(t) process

The order in which wewait for these arrivalswill depend on whether the very first arrival was
type O or type 1. Nevertheless, for n > 1,

Xn=Yo+V1
That is, X5,X;,... areidentical random variables.

o BecauseNy(t) and Ny (t) are Poisson processes, theinterarrival timesX; X5, ... areindependent
random variables

From these facts, we can conclude that N'(t) is a delayed renewal process.
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Problem 11.3.3

@

(b)

(©

(d)

We can define arenewal process such that arenewal occurs whenever we produce an interme-
diatedigit. LetYy,Y,,... denotetheinter-renewal times. Notethat Y hasatruncated geometric
PMF. For this problem, its easier to work with the complementary CDF of Y. In particular,

1 j<0
PY>jl=4q d j=01,..,7
0 otherwise

The expected value of Y is

EV = 5 P> = S d =
2 &1 T

Since oneintermediate digit is produced in each renewal period,

NG 1 1-g
=M BV T 1o

The value of each intermediate digit produced can be viewed as an independent trial. Let R
denote the number of code bits produced by the kth intermediate digit. Note that R = 1 if
intermediate digit 8 is produced; otherwise, R = 4. Since the probability that intermediate
digit 8 is produced is of,

B=E[R=4(1-¢)+a’=4-3
Note that
M(K) = Ry + -+ Re
Since Ry, Ry, ... isan iid random sequence, the strong law of large number says that

lim @ —ER=4-3¢ wp1
Now consider a renewal reward process in which renewals occur whenever an intermediate
digitisproduced and the reward equal sthe number of codebits produced. That is, the sequence
of (Y, R¢) arearenewal reward process. The longterm rate of code bits per unit timeis

(1—a)(4—3®)
1-¢f

MY ER
M=~ gy -

The RLL coding compresses the bit stream if lim_... M(t) /t < 1. Thisrequiresthat
4-4q-2®+3¢° <1

Plotting the left side function of g shows that g > 0.777 ensuresthat RLL coding compresses
the sequence.



Problem 11.3.4

(@) We can define arenewal reward process such that a renewal occurs whenever the source pro-

(b)

(©

ducesal. Over arenewal period, the reward R equals the number of intermediate digits pro-
duced. Thetime X between renewalsisequal to the number of source bits produced during the
renewal period. Notethat X > j iff thefirst j source bits after arenewal are al zero. Hence,

. 1 j=0
P[X>”_{ pg' 1 }:12...

and

EX|=Y PX>jl=1+-—

o I

By similar reasoning, R > r iff the the first 8r source bits are al zero. For example, R> 1, if
thefirst 8 digits after the renewa are all zero.

1 r=0

P[R>r]—{ p®t r=12...

Thisimplies

ER =y PR>r=1+ pq’
By the renewal reward theorem,

_ . NO _ER _ (1-9)(1-’+pq’)
a=lim t  EX (1-¢®)@d-q+p)

Consider a renewal reward process in which one unit of time is required to produce one in-
termediate digit. Renewals occur whenever one of the intermediate digits 0,1,...,7 is pro-
duced. Hence, arenewal period produces a sequence of intermediate digits 88- - - 8x where
x e {0,1,...,7}. Inthis case, the expected time between renewals equals E[R], as defined in
part (a). Over arenewa period, the reward C equals the number of code bits produced. Note
that the first R— 1 intermediate digits produce (R— 1) code bits. For the final intermediate
digit, 4 code bits are produced. Hence C = R+ 3. Moreove,

.Mk E[C] ER+3
P=In =" "ER~ ER

Asin part (a), we consider each time a 1 is produced by the sourceto be arenewal. Thetime
between renewals X is as defined in part (a). We define a reward as the number of code bits
C’ produced during a renewal period. As explained in part (b), if R intermediate digits are
produced, then C' = R+ 3 code bits are produced. In this case, the renewal reward theorem
implies

M(t) E[C] ER+3

M= ~ex -~ Ex *®




(d) The short answer isthat the procedure compresses the source sequence when

JLTOM(t)/t =0B<1

This compression is significant when long sequences of zeroes are typical. This occur when
p and qarecloseto 1. Thisanswer isalittletoo simple because it doesn’'t account for the fact
even if pisnot closeto 1, avaue of g that isvery closeto 1 can result in compression. The
conditionaf < listhesameasE[R] + 3 < E[X]. Interms of p and g, we have

pa’ P
4+ 1P <1+ 1 g
This can be simplified to
3(1-
p> D9 _31_qn@

where h(g) = (1—¢®)/(1—q’). We will show that h(q) is an increasing function such that
1 <h(q) <8/7for 0 < g< 1. Notethat we can writeh(q) as

(1-q)q’

Sincel—q’ = (1-q)(1+q+?+---+qP), we can write

q’ _ 1

h(q) = =14
(@ T — +Zi7:11/(1'

Since 1/q' is adecreasing function in g for al i > 1, ¥/ ;1/d is a decreasing function and
h(q) isan increasing function. Thus, for 0 < q <1,

1=h(0) <h(q) <h(1) =8/7

Thus a necesssary condition for compressionis p > 3(1—q). A sufficient condition for com-
pressionisp > 24(1—q)/7. Thisimpliesthat if q < 2/3 then we cannot haveany compression,
no matter what the value of p.

Problem 11.4.2
fact by fact to identify the information given.

‘... eachread or write operation reads or writesan entirefile and that files contain ageometric
number of sectors with mean 50.”

This statement says that the length L of afile has PMF

[ 1-p'tp 1=12,...
P'-(I)_{ 0 otherwise

with p=1/50=0.02. Thissaysthat when wewrite asector, wewill writeanother sector with
probability 49/50 = 0.98. In terms of our Markov chain, if we arein the write state, we write
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another sector and stay in the write state with probability P», = 0.98. Thisfact also implies
Poo+ P>y = 0.02.

Also, sincefilesthat are read obey the same length distribution,

Pll =0.98 P]_o + P12 =0.02

e “Further, supposeidle periods last for a geometric time with mean 500.”

Thisstatement simply saysthat giventhe systemisidle, it remainsidiefor another unit of time
with probability Pyg = 499/500 = 0.998. This also saysthat Py + Py, = 0.002.

o “After anidle period, the system isequally likely to read or write afile.”
Given that at time n, X, = 0, this statement says that the conditional probability that

__Pun
Po1 + Po2

Combined with the earlier fact that Py; + Py, = 0.002, we learn that

PXnt1 = 1|%n = 0,Xn41 # O] 0.5

Po1 = Pop = 0.001

¢ “Following the completion of aread, awrite follows with probability 0.8.”
Here we learn that given that at time n, X, = 1, the conditional probability that

P
Pio+ P2

Combined with the earlier fact that Pjg + P> = 0.02, we learn that

PXni1=2[Xn =1, Xn1 #1] = 0.8

P10 = 0.004 P12 = 0.016

o “However, on completion of awrite operation, aread operation follows with probability 0.6.”
Now we find that given that at time n, X, = 2, the conditional probability that

_Pa
P+ P21

Combined with the earlier fact that P,g + P,; = 0.02, we learn that

PXo1=1X =2, X1 # 2] = 0.6

Pyo=0008 P, =0.012

The completetreeis




Problem 11.6.2
state probabilities. By Theorem 11.10, the probability of state k at timenis

pe(n) = > pi(n—1)R
i; | |
Since By = g for every statei,
PN =9 pi(n—1)=q
2"

Thusfor any timen > 0, the probability of statek isq.

Problem 11.7.3

states j andi communicate, then sometimeswhen we go from state j back to state j, wewill pass
through statei. If E [Ti j} = oo, then on those occasions we pass through i, the expectred time to go
to back to j will beinfinite. Thiswould suggest E [Tj j} = oo and thus state j would not be positive
recurrent. Using a math to prove thisrequiresalittle bit of care.

Suppose E [Ti j} =00, Sincei and j communicate, we can find n, the smallest nonnegativeinteger

such that Pj(i”) > 0. Givenwe start in state j, let G; denote the event that we go through statei on our
way back to j. By conditioning on G;j;,

E[Tj;] = E[T}j|Gi|PIG] +E[T;;|Gf| PG|
SinceE[Tj j|Gﬂ P[Gf] > 0,
E[Tj;] > E[T;;|Gi]P[G]
Giventheevent G;, Tjj = Tji + Tjj. Thisimplies
E[Tj;|Gi] = E[T;i|Gi] +E[Tij|Gi] > E[Ti|G|]

Sincethe random variable Tjj assumesthat we start in statei, E[Tij| G| = E[Tjj]. ThusE[T;;|G] >
E [Ti j] . Inaddition, P[G;] > Pj(i”) since there may be paths with more than n hopsthat take the system
from state j toi. These factsimply

E[Tjj] > E[Tjj|Gi]PIG] > E[T;j] P =

Thus, state j is not positive recurrent, which is a contradiction. Hence, it must be that E [Tj;] < co.
Problem 11.8.3

0 front teller busy, rear teller idle
1 front teller busy, rear teller busy

2 front teller idle, rear teller busy

We will assume the units of time are seconds. Thus, if ateller is busy one second, the teller will
becomeidlein th next second with probability p= 1/120. The Markov chain for this systemis
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I-p pH(Ip)’ Ip
p () pap ()

p(1p)
We can solve this chain very easily for the stationary probability vector 1. In particular,
To=(1-pP)To+p(l-pm
Thisimpliesthat T = (1— p)my. Similarly,
= (1-pm+p(l-p)m

yieldsp, = (1 p)Ty. Hence, by applying o+ 14 + T = 1, we obtain

1-p
H=Th 3 2p /
1
= ——=— = 120/358
=372 /

The stationary probability that both tellers are busy is Ty = 120/358.

Problem 11.9.1

Equivalently, we can prove that if B; # O for some i, then the chain cannot
be periodic. So, suppose for statei, Bj > 0. Since Bj = Pi(il), we see that the
largest d that divides n for al n such that Pi§”> > 0isd = 1. Hence, statei is
aperiodic and thus the chain is aperiodic.

The conversethat B = O for al i impliesthe chainis periodicisfase. Asa
counterexample, consider the simple chain on the right with B; = 0 for each
i. Notethat P2 > 0and P > 0. Thelargest d that divides both 2 and 3 is
d = 1. Hence, state 0 is aperiodic. Since the chain has one communicating
class, the chain is also aperiodic.

Problem 11.10.1
in each state i, the tiger spends an exponential time with parameter A;. When we measure time
in hours,

MN=01=1/3 A=0p=1/2 Ay=0yp=2

The corresponding continous time Markov chain is shown below:
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The state probabilities satisfy

po-2 - +pt+p=1
3po— P2 2p1—3po Po+P1+P2=

The solutionis
[P0 p1 P2 =[6/11 4/11 1/11]

Problem 11.11.7
Since both types of calls have exponential holding times, the number of callsin the system can
be used as the system state. The corresponding Markov chainis

[Mh m Al R |
Ol
1 c-1 c

h
c-r c-r+l

When the number of calls, n, islessthan c—r, we admit either type of call and gn 1 = A +h. When
n>c—r, weblock the new callsand we admit only handoff callssothat g, 1 = h. Sincetheservice
times are exponential with an averagetime of 1 minute, the call departureratein statenisn calls per
minute. Theorem 11.29 says that the stationary probabilities py, satisfy

A+h
+ pnfl n:1,2,,C—r
pn= )\n
ﬁpn—l n=c—r+lc—-r+2...,c
Thisimplies
A-+h)"
( ;) Po n=122,...,c—r
Pn = (}\_i_'h)cfr)\nf(cfr)

o Pppo n=c—r+1lc—r+2...,c

The requirement that $5_; pn = 1yields

Cr (A+h)" c AN—(c=r)
o Z ( +| ) + ()\ + h)Cfl‘ | — 1
= n=c—r+1 n:

Finally, a handoff call is dropped if and only if a new call finds the system with ¢ callsin progress.
The probability that a handoff call isdroppedis

P[H] = pc = ()\ + h)Cﬂ‘)\r Po = (}\ + h)cfr}\r/c!

c! c—r (Athn Ah\ S e A
2n—0 T e Zn:c—r+lﬁ
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