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Problem 10.1.3
By Theorem 10.1, the mean of the output is

µY
� µX

� ∞

� ∞
h � t � dt

� 4
� ∞

0
e
� t � a dt

��� 4ae
� t � a

∞

0� 4a

Since µY
� 1 � 4a, we must have a � 1 � 4.

Problem 10.2.4

(a) Note that 	H � f �
	 � 1. This implies SM̂ � f � � SM � f � . Thus the average power of M̂ � t � is

q̂ �
� ∞

� ∞
SM̂ � f � d f �

� ∞

� ∞
SM � f � d f � q

(b) The average power of the upper sideband signal is

E U2 � t � � E M2 � t � cos2 � 2π fct � Θ �
� E 2M � t � M̂ � t � cos � 2π fct � Θ � sin � 2π fct � Θ �

� E M̂2 � t � sin2 � 2π fct � Θ �
To find the expected value of the random phase cosine, for an integer n �� 0, we evaluate

E 
 cos � 2π fct � nΘ ��� �
� ∞

� ∞
cos � 2π fct � nθ � fΘ � θ � dθ

� � 2π

0
cos � 2π fct � nθ � 1

2π
dθ

� 1
2nπ

sin � 2π fct � nθ ��	 2π
0

� 1
2π

� sin � 2π fct � 2nπ � � sin � 2π fct ��� � 0

Similar steps will show that for any integer n �� 0, the random phase sine also has expected
value

E 
 sin � 2π fct � nΘ ��� � 0
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Using the trigonometric identity cos2 φ � � 1 � cos2φ ��� 2, we can show

E cos2 � 2π fct � Θ � � E
1
2
� 1 � cos � 2π � 2 fc � t � 2Θ ��� � 1 � 2

Similarly,

E sin2 � 2π fct � Θ � � E
1
2
� 1 � cos � 2π � 2 fc � t � 2Θ ��� � 1 � 2

In addition, the identity 2sinφcosφ � sin2φ implies

E 
 2sin � 2π fct � Θ � cos � 2π fct � Θ ��� � E 
 cos � 4π fct � 2Θ ��� � 0

Since M � t � and M̂ � t � are independent of Θ, the average power of the upper sideband signal is

E U2 � t � � E M2 � t � E cos2 � 2π fct � Θ � � E M̂2 � t � E sin2 � 2π fct � Θ �
� E M � t � M̂ � t � E 
 2cos � 2π fct � Θ � sin � 2π fct � Θ ���

� q � 2 � q � 2 � 0 � q

Problem 10.3.3
Theorem 10.9 which states

SXY � f � � H � f � SX � f �
(a) From Table 10.1, we observe that

SX � f � � 8
16 ��� 2π f � 2 H � f � � 1

7 � j2π f

(b) From Theorem 10.9,

SXY � f � � H � f � SX � f � � 8

 7 � j2π f ��
 16 ��� 2π f � 2 �

(c) To find the cross correlation, we need to find the inverse Fourier transform of SXY � f � . A straight-
forward way to do this is to use a partial fraction expansion of SXY � f � . That is, by defining
s � j2π f , we observe that

8
� 7 � s ��� 4 � s ��� 4 � s � �

� 8 � 33
7 � s

� 1 � 3
4 � s

� 1 � 11
4 � s

Hence, we can write the cross spectral density as

SXY � f � � � 8 � 33
7 � j2π f

� 1 � 3
4 � j2π f

� 1 � 11
4 � jπ f
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Unfortunately, terms like 1 ��� a � j2π f � do not have an inverse transforms. The solution is to
write SXY � f � in the following way:

SXY � f � � � 8 � 33
7 � j2π f

� 8 � 33
4 � j2π f

� 1 � 11
4 � j2π f

� 1 � 11
4 � j2π f

� � 8 � 33
7 � j2π f

� 8 � 33
4 � j2π f

� 8 � 11
16 ��� 2π f � 2

Now, we see from Table 10.1 that the inverse transform is

RXY � τ � ��� 8
33

e
� 7τu � τ ��� 8

33
e
� 4τu � τ ��� 1

11
e
� 4 � τ �

Problem 10.4.1

(a) Since CX � t1 � t2 � t1 � � ρσ1σ2, the covariance matrix is

C � CX � t1 � 0 � CX � t1 � t2 � t1 �
CX � t2 � t1 � t2 � CX � t2 � 0 �

� σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

Since C is a 2 � 2 matrix, it has determinant 	C 	 � σ2
1σ2

2 � 1 � ρ2 � .
(b) Is is easy to verify that

C
� 1 � 1

1 � ρ2

1
σ2

1

� ρ
σ1σ2� ρ

σ1σ2

1
σ2

1

(c) The general form of the multivariate density for X � t1 � � X � t2 � is

fX � t1 �! X � t2 � � x1 � x2 � � 1

� 2π � k� 2 	C 	 1� 2
e
� 1

2 � x̄ � µ̄X �#" C$ 1 � x̄ � µ̄X �

where k � 2 and x̄ � 
 x1 x2 �&% and µ̄X
� 
µ1 µ2 �&% . Hence,

1

� 2π � k� 2 	C 	 1� 2
� 1

2π σ2
1σ2

2 � 1 � ρ2 �
Furthermore, the exponent is

� 1
2
� x̄ � µ̄X � % C

� 1 � x̄ � µ̄X � �'� 1
2

x1
� µ1 x2

� µ2
1

1 � ρ2

1
σ2

1

� ρ
σ1σ2� ρ

σ1σ2

1
σ2

1

x1
� µ1

x2
� µ2

�'�
x1
� µ1

σ1

2 � 2ρ � x1
� µ1 ��� x2

� µ2 �
σ1σ2

� x2
� µ2

σ2

2

2 � 1 � ρ2 �
Plugging in each piece into the joint PDF fX � t1 �! X � t2 � � x1 � x2 � given above, we obtain the bivari-
ate Gaussian PDF.
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Problem 10.5.3

(a) Since SW � f � � 10
� 15 for all f , RW � τ � � 10

� 15δ � τ � .
(b) Since Θ is independent of W � t � ,

E 
V � t �(� � E 
W � t � cos � 2π fct � Θ ��� � E 
W � t �(� E 
 cos � 2π fct � Θ ��� � 0

(c) We cannot initially assume V � t � is WSS so we first find

RV � t � τ � � E 
V � t � V � t � τ �!�
� E 
W � t � cos � 2π fct � Θ � W � t � τ � cos � 2π fc � t � τ ��� Θ �!�
� E 
W � t � W � t � τ �!� E 
 cos � 2π fct � Θ � cos � 2π fc � t � τ ��� Θ �!�
� 10

� 15δ � τ � E 
 cos � 2π fct � Θ � cos � 2π fc � t � τ ��� Θ �!�
We see that for all τ �� 0, RV � t � t � τ � � 0. Thus we need to find the expected value of

E 
 cos � 2π fct � Θ � cos � 2π fc � t � τ ��� Θ �!�
only at τ � 0. However, its good practice to solve for arbitrary τ:

E 
 cos � 2π fct � Θ � cos � 2π fc � t � τ ��� Θ �)�
� 1

2
E 
 cos � 2π fcτ ��� cos � 2π fc � 2t � τ ��� 2Θ �!�

� 1
2

cos � 2π fcτ ��� 1
2

� 2π

0
cos � 2π fc � 2t � τ ��� 2θ � 1

2π
dθ

� 1
2

cos � 2π fcτ ��� 1
2

sin � 2π fc � 2t � τ ��� 2θ �
2π

0

� 1
2

cos � 2π fcτ ��� 1
2

sin � 2π fc � 2t � τ ��� 4π � � 1
2

sin � 2π fc � 2t � τ ���
� 1

2
cos � 2π fcτ �

Consequently,

RV � t � τ � � 1
2

10
� 15δ � τ � cos � 2π fcτ � � 1

2
10
� 15δ � τ �

(d) Since E 
V � t �(� � 0 and since RV � t � τ � � RV � τ � , we see that V � t � is a wide sense stationary pro-
cess. Since L � f � is a linear time invariant filter, the filter output Y � t � is also a wide sense sta-
tionary process.

(e) The filter input V � t � has power spectral density SV � f � � 1
210

� 15. The filter output has power
spectral density

SY � f � � 	L � f �
	 2 SV � f � � 10
� 15 � 2 	 f 	+* B

0 otherwise

The average power of Y � t � is

E Y2 � t � � � ∞

� ∞
SY � f � d f �

� B

� B

1
2

10
� 15 d f � 10

� 15B
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Problem 10.5.4
and Y � t � are the input andoutput of a linear time invariant filter h � u � . In that case,

Y � t � �
� t

0
N � u � du �

� ∞

� ∞
h � t � u � N � u � du

For the above two integrals to be the same, we must have

h � t � u � � 1 0 * t � u * t
0 otherwise

Making the substitution v � t � u, we have

h � v � � 1 0 * v * t
0 otherwise

Thus the impulse response h � v � depends on t. That is, the filter response is linear but not time in-
variant. Since Theorem 10.7 requires that h � t � be time invariant, this example does not violate the
theorem.

Problem 10.5.5
process since it is the output of a linear filter with Gaussian input process N � t � . We observe that

E 
Y � t �,� �.- t
0 E 
N � u ��� du � 0. The autocorrelation funciton of the output is

RY � t � τ � � E 
Y � t � Y � t � τ ���
� E

� t

0
N � u � du

� t / τ

0
N � v � dv

� � t

0

� t / τ

0
E 
N � u � N � v ��� dvdu

Since N � t � is a White noise process,

E 
N � u � N � v ��� � RN � u � v � u � � αδ � v � u �
This implies

RY � t � τ � � α
� t

0

� t / τ

0
δ � v � u � dv du

If τ 0 0, then for each u 12
 0 � t � there is v 12
 0 � t � τ� such that v � u and - t / τ
0 δ � v � u � dv � 1. This

implies

RY � t � τ � � α
� t

0
du � αt

If τ 3 0, then we write

RY � t � τ � � α
� t / τ

0

� t

0
δ � v � u � du dv
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For each v 14
 0 � t � τ� there is u 14
 0 � t � such that u � v and - t
0 δ � v � u � du � 1. This implies

RY � t � τ � � α
� t / τ

0
dv � α � t � τ �

The complete expression for the autocorrelation of Y � t � is

RY � t � τ � � αmin � t � t � τ �
In Chapter 6, we found that a Brownian motion process X � t � is a zero mean Gaussian process. In
addition, in Example 6.17, we found that a Brownian motion process X � t � has autocorrelation func-
tion

RX � t � τ � � αmin � t � t � τ �
Since a Gaussian process is completely specified by the mean E 
X � t ��� and the autocorrelation RX � t � τ � ,
we can conclude that Y � t � must be a Gaussian process.

Another way to interpret this result is to write for t 5 s, the increment is

Y � t � � Y � s � �
� t

0
N � u � du �

� s

0
N � u � du �

� t

s
N � u � du

For each v 16
 s � t � , N � v � is independent of N � u � for any u 17
 0 � s� . Thus for any s89* s, Y � s8(� �- s:
0 N � u � du is independent of Y � t � � Y � s � . Hence Y � t � is a zero mean Gaussian process with inde-

pendent increments and Y � 0 � � 0, which is Definition 6.11 for the Brownian motion process.

Problem 10.6.4
We start with Theorem 10.13:

RY 
 n� �
∞

∑
i ; � ∞

∞

∑
j ; � ∞

hih jRX 
 n � i � j�
� RX 
 n � 1�<� 2RX 
 n��� RX 
 n � 1�

First we observe that for n * � 2 or n 0 2,

RY 
 n� � RX 
 n � 1��� 2RX 
 n��� RX 
 n � 1� � 0

This suggests that RX 
 n� � 0 for 	 n 	+5 1. In addition, we have the following facts:

RY 
 0� � RX 
 � 1��� 2RX 
 0�<� RX 
 1� � 2

RY 
 � 1� � RX 
 � 2��� 2RX 
 � 1�<� RX 
 0� � 1

RY 
 1� � RX 
 0��� 2RX 
 1��� RX 
 2� � 1

A simple solution to this set of equations is RX 
 0� � 1 and RX 
 n� � 0 for n �� 0.
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