Probability and Stochastic Processes:
A Friendly Introduction for Electrical and Computer Engineers
Roy D. Yates and David J. Goodman

Problem Solutions: Yates and Goodman,10.1.3 10.2.4 10.3.3 10.4.1 10.5.3 10.5.4 10.5.5 and
10.6.4

Problem 10.1.3
By Theorem 10.1, the mean of the output is

Hy = Hx[ h(t) dt

= 4/ e /2t
0

00

— _4aeft/a
0

=4a

Since gy = 1 = 4a, wemust havea = 1/4.
Problem 10.2.4

(@ Notethat [H(f)| = 1. ThisimpliesS;(f) = Su(f). Thusthe average power of M(t) is
a= [ sahdt= [ su(nar=a

(b) The average power of the upper sideband signal is

E[UA(t)] = E[MA(t) cos*(2mfct + ©)]
—E[2M(t)M(t) cos(2mtfct + @) sin(2mtfet + ©)]
+E[M?(t) sin?(2mtfet + ©)]

To find the expected value of the random phase cosine, for an integer n # 0, we evaluate

E[cos(2rtfet + n@)] = / cos(2mfct + 1) fo () dO
- 2mf 0 1 de
_/O cos(2mfct+n )EI
1 .
= 5 sin(2mfet +1n6) an
= %T (sin(2rmtfet 4 2nm) — sin(2mtfct)) =0

Similar steps will show that for any integer n +# 0, the random phase sine aso has expected
value

E[sin(2mtfct +nG)] =0
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Using the trigonometric identity cos? @ = (14 cos29)/2, we can show

E [co?(2nfet + ©)] = E E (1-+ cos(2m(2fo)t + 2@))] —1/2
Similarly,

El[sn®(2nft+©)] =E E (1— cos(2m(2f.)t + 2@))} =1/2
In addition, the identity 2sing@cos@ = sin2@implies

E[2sin(2mtfct 4 ©) cos(2mfct + ©)] = E[cos(4mtfct +20)] =0

Since M(t) and M(t) areindependent of ©, the average power of the upper sideband signal is

E[U4(t)] = E[M?(t)]E [052(2nfct+®)] E[MA(t)|E[sin*(2mtft + ©)]
—E[M(t)M(t)| E[2cos(2mfct + ©) sin(2mfct + ©)]
—q/2+<1/2+ =4

Problem 10.3.3
Theorem 10.9 which states

() From Table10.1, we observe that

8 1

S(O=t7mz "= 757am

(b) From Theorem 10.9,

" [7+ j2nf][16+ (2nf)?

(c) Tofindthecrosscorrelation, weneedtofindtheinverseFourier transformof Sxy(f). A straight-
forward way to do thisisto use a partial fraction expansion of Sy (f). That is, by defining
s= j2nf, we observe that

8 _ -8/33 1/3 1/11
(74+5s)(4+9s)(4—s) T7+s 4+s 4-s

Hence, we can write the cross spectral density as

-8/33 13 1ynu
7+ j2nf 4+ j2nf  4— jmf

Sk (f) =



Unfortunately, termslike 1/(a— j2mtf) do not have an inverse transforms. The solution isto
write Sy ( f) in the following way:

Ser(f) = -8/33 8/33 1/11 1/11
T 7 ont T4 jonf T4+ jonf ' 4—j2onf
-8/33 8/33 8/11

T 7+jonf T4t jonf 16+ (2mf)2

Now, we see from Table 10.1 that the inverse transform is

Ry (T) = —%e—ﬁu(r) + %e““u(r) + 1—11e‘4“‘
Problem 10.4.1
(8 SinceCx(t1,to —t;) = po102, the covariance matrix is
| Cx(t1,0)  Cx(ta,ta—ty) 0  PO102
T |Cx(tti—t)  Cx(t,0) | |poio, 03

Since C isa2 x 2 matrix, it has determinant |C| = 0203(1 — p?).

(b) Isiseasy to verify that

1 —p

a1 02 0107
1-p?2 | P =
010, 03

(c) Thegenera form of the multivariate density for X(t), X(t2) is
1
(2m/2|C|*/?
wherek = 2 and X = [x1 %] " and px = [H1 Mo . Hence,

1 1

(2mk2|C[Y? o, /0203(1— p?)

Furthermore, the exponent is

fxty) X(tz) (X1, %) = e 2(x)TCTH(x—x)

1 —p
1_ _ _ — 1 1 2 —
R A T | B [
010, 02
(Xl—ul)z_ZP(Xl—Hl)(Xz—Hz)+(Xz—ll2>2
01 0102 02
2(1-p?)

Plugging in each pieceinto thejoint PDF fy ;) x(t,) (X1, X2) given above, we obtain the bivari-
ate Gaussian PDF.



Problem 10.5.3

(@ Since Sy(f) =10 for al f, Ry(t) = 10~5(1).

(b) Since © isindependent of W(t),
EV(t)] = EW(t) cos(2mtfct + ©)] = E[W(t)]E[cos(2mtfct +O)] =0

)
(c) We cannot initially assumeV/(t

Ru(t,1)

) isWSS so wefirst find
ENV(OV(t+1)]

EW(t) cos(2rtfct + ©)W(t + 1) cos(2mtfe(t + 1) + O)]
EW(t)W(t + 1)]E[cos(2mtfct + ©) cos(2mfc(t + 1) + O)]
10~ 1°8(1)E[cos(2rtfct + ©) cos(2tfe(t + 1) + O)]

We see that for al T # 0, Ry(t,t + 1) = 0. Thuswe need to find the expected val ue of

E[cos(2mtfct + O) cos(2rtfe(t + 1) + O)]

only at T = 0. However, its good practice to solve for arbitrary 1:
E[cos(2mtfct + ©) cos(2fe(t + 1) + O)]

Consequently;,

(d) SinceE[V(t)]

2

Ry(t,T) =

cos(2mtfcT) + % sin(2mtfe(2t + 1) + 20)

NN N
Q Q

%E[cos(Zthcr) + cos(2mtfe(2t + 1) + 20)]

1 1 om 1
= Zcos(2mfeT) + = / cos(2rtfe(2t +1) 4 26) — dB
2Jo 21

21

0

os(2mtfcT) + 1 sin(2mfe(2t 4 1) +41) — 1 sin(2rtfe(2t +1))

2 2

0s(2rtfcT)

%10*156(0 cos(2rfc1) = %10*156@)

=0andsinceRy(t,T) = Ry(T1), weseethat V(t) is awide sense stationary pro-

cess. SinceL(f) isalinear timeinvariant filter, the filter output Y(t) is also awide sense sta-
tionary process.

() Thefilter input V(t) has power spectral density S, (f) = %10*15. The filter output has power
spectral density

/() =ILOPs(H =1 o

10*15/2 |fl<B
otherwise

The average power of Y(t) is

/s{ df_/ 210*15df 10158



Problem 10.5.4
and Y(t) aretheinput andoutput of alinear timeinvariant filter h(u). In that case,

t o)
Yayi/Nwmu:/'ha—memu
0 —o0
For the above two integral s to be the same, we must have

1 0<t—u<t
h(t—u) :{ 0 otherwise

Making the substitution v =1t — u, we have

h(v) = 1 0<v<t
~ ] 0 otherwise

Thus the impulse response h(v) dependsont. That is, the filter responseis linear but not time in-
variant. Since Theorem 10.7 requires that h(t) be time invariant, this example does not violate the
theorem.

Problem 10.5.5
process sinceit isthe output of alinear filter with Gaussian input process N(t). We observe that
E[Y(t)] = S E[N(u)]du = 0. The autocorrelation funciton of the output is

Since N(t) isaWhite noise process,
E[N(u)N(V)] = Ry(u,v—u) = ad(v—u)

Thisimplies

mmn:a/

0

t 41
( o(v—u) dv) du
0

If T > 0, then for each u € [0,t] thereisv € [0,t + 1] such that v=u and f§*"&(v—u)dv=1. This
implies

t
Ry(t,1) = 0(/ du=at
0

If T < 0, then we write

Ry(t,T) = 0(/0t+T (/oté(v— u)du> dv



For each v € [0,t + 1] thereisu e [0,t] such that u=vand [} 3(v— u)du = 1. Thisimplies
t+1

Ry(t,1) :cx/o dv=a(t+1)

The complete expression for the autocorrelation of Y(t) is
Ry(t,T) = amin(t,t +1)

In Chapter 6, we found that a Brownian motion process X(t) is a zero mean Gaussian process. In
addition, in Example 6.17, we found that a Brownian motion process X(t) has autocorrelation func-
tion

Rx(t,T) = amin(t,t 4+ 1)

SinceaGaussian processis compl etely specified by themean E[X(t)] and theautocorrelation Rk (t, T),
we can conclude that Y (t) must be a Gaussian process.
Another way to interpret thisresult isto writefor t > s, theincrement is

S

Y(t)Y(s)—/OtN(u)du/ N(u)du—/StN(u)du

0

For each v € [s;t], N(v) is independent of N(u) for any u € [0,5]. Thusforany s <s, Y(s) =
fg N(u)du isindependent of Y(t) — Y(s). Hence Y(t) is a zero mean Gaussian process with inde-
pendent increments and Y (0) = 0, which is Definition 6.11 for the Brownian motion process.

Problem 10.6.4
We start with Theorem 10.13:

Ry[n] = i i hihjRx[n+i — j]
=00 j=—co
= Rx[n— 1]+ 2Rx[n] 4+ Rx[n+1]
First we observethat forn< —2orn> 2,
Ry[n] = Rx[n—1] +2Rx[n] + Rx[n+1] =0
This suggeststhat Rx[n] = O for |n| > 1. In addition, we have the following facts:

Ry[0] = Rx[—1] +2Rx[0] + Rx[1] = 2
Ry[—1] = Rx[-2] + 2R [-1] +Rx[0] = 1
Ry[1] = Rx[0] + 2Rx[1] + Rx[Z] = 1

A simple solution to this set of equationsis R [0] = 1 and Rx[n] = 0 for n #£ 0.



