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Problem 1.2.3
The sample spaceis

S={Ad,....K&AD,... KOAD,... KO, AM,... K&}

The event H isthe set
H={AQ,... KO}

Problem 1.3.1
The sampl e space of the experiment is

S= {LF.BF,LW,BW}

From the problem statement, we know that P[LF]| = 0.5, P[BF] = 0.2 and P[BW] = 0.2. Thisimplies
P[LW] =1—0.5—0.2— 0.2 = 0.1. The questions can be answered using Theorem 1.5.

(a) The probability that aprogramisslow is

P[W| = P[LW] + P[BW] = 0.1+ 0.2 = 0.3.

(b) The probability that a programisbigis

P[B] = P[BF] + P[BW] = 0.2+ 0.2 =0.4.
(c) The probability that a program isslow or bigis
PWUB| = P[W] + P[B] — P[BW] =0.3+0.4—0.2=0.5

Problem 1.4.6
It is tempting to use the following proof:

Since Sand @ are mutually exclusive, and since S= SU @,
1=P[SU@ =P[S + P[¢

Since P[§ = 1, we must have P[g] = 0.



The above “proof” used the property that for mutually exclusive sets A; and Ay,
P[ALU A = P[Aq] + P[A;]

The problemisthat this property isa consequence of the three axioms, and thus must be proven. For
aproof that usesjust thethreeaxioms, let A; bean arbitrary setandforn=2,3,..., let A, = ¢. Since
A = U2 A, we can use Axiom 3 to write

PIAw) = PLUT1A] = PIAL + P + 3 PIA]

By subtracting P[A;] from both sides, the fact that A, = ¢ permits usto write

By Axiom 1, P[Aj] > Oforalli. Thus, 35 s P[A] > 0. ThisimpliesP[¢| < 0. Since Axiom 1 requires
P[@ > 0, we must have P[g| = 0.

Problem 1.4.7
Following the hint, we define the set of events {Aj|i = 1,2,...} suchthati =1,... ,.m A = B;
and fori > m, A; = @. By construction, U™ ; B; = U;* ;A;. Axiom 3 then implies

PIUT 8]~ PlUZsA) - 3 PIA]
Fori > m, P[A]] =0, yielding
PlUR4B] — 5 PlA] = 5 PlB]

Problem 1.4.8

Theorem 1.7 requires a proof from which we can check which axioms are used. However, the
problem is somewhat hard because there may still be a simpler proof that uses fewer axioms. Still,
the proof of each part will need Theorem 1.4 which we now prove.

For themutually exclusiveeventsBy,... ,Bmy, let A =B fori=1,... ,mandlet A, = @fori > m.
In that case, by Axiom 3,

PBiUBU---UBy] =P[A]UAU - -]
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Now, we use Axiom 3 again on Ap, Am.1,- .. towrite

PIA] = P[AmUAm1U-- ]| = P[Bn|

M



Thus, we have used just Axiom 3 to prove Theorem 1.4:
m
PBiUBU---UBy| = ZP[Bi]
i=

(8 Toshow P[@ =0, let By = Sand let B, = @. Thus by Theorem 1.4
P[S = P[B1UBg| = P[B4] + P[B;] = P[S + P[¢]
Thus, P[@] = 0. Note that this proof uses only Theorem 1.4 which uses only Axiom 3.
(b) Using Theorem 1.4 with B; = A and B, = A°, we have
P[S = P[AUA"| = P[A] + P[A"]
Since, Axiom 2 says P[§ = 1, P[A®] = 1— PJA]. Thisproof uses Axioms 2 and 3.
(c) By Theorem 1.2, we can write both A and B as unions of digoint events:
A= (AB)U(AB%)  B=(AB)U(AB)
Now we apply Theorem 1.4 to write
P[A] = P[AB] + P|ABY| P[B| = P|AB] + P|A°B]
We can rewrite these facts as
P[AB‘] = P[A] — P|AB] P[A°B] = P[B] — P|AB] (1)

Note that so far we have used only Axiom 3. Finally, we observe that AU B can be written as
the union of mutually exclusive events

AUB = (AB)U (AB%) U (A°B)
Once again, using Theorem 1.4, we have
P[AUBJ] = P|AB] + P|AB°] + P|A°B] 2
Substituting the results of Equation 1 into Equation 2 yields
P[AUB] = P[AB] + P[A] — P[AB| + P[B] — P[AB]
which completes the proof. Note that this claim required only Axiom 3.

(d) Observethat since A C B, we can write B as the digoint union B= AU (A°B). By Theorem
1.4 (which uses Axiom 3),

P[B] = P[A] + P[AB]

By Axiom 1, P[A°B] > 0, hich implies P[A] < P[B|. This proof uses Axioms1 and 3.



Problem 1.5.6
The problem statement yields the obvious facts that P[L] = 0.16 and P[H] = 0.10. The words“10%
of the ticks that had either Lyme disease or HGE carried both diseases’ can be written as

P[LH|LUH] =0.10
(& SinceLH c LUH,

P[LH|LUH] = P[Lg{ES‘:}H)} = PF[E"UHA] ~0.10

Thus,
P[LH] = 0.10P[L UH] = 0.10(P|L] + P[H] — P[LH])
Since P[L] = 0.16 and P[H] = 0.10,

0.10(0.16+0.10)

P[LH] = 11

= 0.0236

(b) The conditional probability that atick has Lyme disease given that it hasHGE is

P[L|H] = % ~0.236

Problem 1.6.7

() For any events A and B, we can write the law of total probability in the form of
P[A] = P|AB] + P[AB]
Since A and B are independent, P[AB] = P[A]P[B]. Thisimplies
P[AB®] = P[A] — P[AIP[B] = P[A|(1— P[B]) = P[AJP[B]
Thus A and B° are independent.

(b) Proving that A® and B are independent is not really necessary. Since A and B are arbitrary
labels, it isredly the same claim asin part (a). That is, Simply reversing the labels of A and
B provesthe claim. Alternatively, one can construct exactly the same proof asin part (a) with
the labels A and B reversed.

(c) To provethat A° and B® are independent, we apply the result of part (a) to the sets A and B°.
Since we know from part (a) that A and B® are independent, part (b) says that A® and B® are
independent.



Problem 1.6.9

In the Venn diagram at right, assume the sample space hasarea 1 corre-
spondingto probability 1. Asdrawn, A, B, andC each haveareal/3and
thus probability 1/3. The three way intersection ABC has zero proba-
bility, implying A, B, and C are not mutually independent since

P[ABC] = 0 # P[A]PB|P|C]

However, AB, BC, and AC each hasarea 1/9. Asaresult, each pair of eventsisindependent since

P[AB] = P[A]P[B] P[BC]

Problem 1.7.5

The P[—|H] isthe probability that a person who has HIV tests negative for the disease. Thisisre-
ferredto asafalse-negativeresult. The case whereaperson who does not have HIV but tests positive
for the disease, is called afalse-positive result and has probability P[4|H®]. Sincethetest is correct

99% of thetime,

P[—|H] = P[+|H = 0.01

= P[BIP[C]

AB

AC

BC

P[AC] = P|A]P[C]

Now the probability that a person who hastested positive for HIV actually hasthe diseaseis

PH|+]| =

_ P[+H]

P+, H]

P[+]

PH|+]

Pl+,H] + P[+,H¢]
We can use Bayes' formulato evaluate these joint probabilities.

P[+|H]P[H]

(0.99)(0.0002)

P[-+[H]P[H] + P[+HYP[H¢]

(0.99)(0.0002) + (0.01)(0.9998)

= 0.0194

Thus, even though thetest is correct 99% of the time, the probability that arandom person who tests
positive actually has HIV islessthan 0.02. The reason this probability is so low is that the a priori

probability that a person has HIV isvery small

Problem 1.7.7
Thetreefor this experiment is
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The event H,H, that heads occurs on bath flips has probability
P[H1H,]| = P[AqH1Ho| + P[B1HiH,| = 6/32
The probability of H; is
P[H1] = P[A1H1H2] + P[A1H1To) + P[BiH1H2) + P[BiH1 T = 1/2

Similarly,
P[Hz] = P[AlHle] + P[AlTle] + P[B]_H]_Hz] + P[B]_T]_Hz] = 1/2

Thus P[H1H,] # P[H]P[H>], implying H; and H, are not independent. This result should not be
surprising since if the first flip is heads, it is likely that coin B was picked first. In this case, the
second flip is less likely to be heads since it becomes more likely that the second coin flipped was
coinA.

Problem 1.8.7
What our design must specify isthe number of boxes on the ticket, and the number of specialy
marked boxes. Suppose each ticket has n boxes and 5+ k specially marked boxes. Note that when
k > 0, awinning ticket will still have k unscratched boxeswith the special mark. A ticket isawinner
if each time abox is scratched off, the box has the special mark. Assuming the boxes are scratched
off randomly, thefirst box scratched off has the mark with probability (5-+ k) /n sincethereare 5+ k
marked boxes out of n boxes. Moreover, if the first scratched box has the mark, then there are 4+ k
marked boxes out of n— 1 remaining boxes. Continuing this argument, the probability that a ticket
isawinneris
_ 5+k4+k3+k2+kl+k (k+5!(n-5)!
~ n n-1n-2n-3n—-4 kin!
By careful choice of nand k, we can choose p closeto 0.01. For example, some possible choices
are

n|ikip

9 | 0]0.0079
11|10.012
14| 2| 0.0105
17| 3| 0.0090

Probably, a gamecard with N = 14 boxes and 5+ k = 7 shaded boxes would be quite reasonable.
Problem 1.9.9

(a) There are 3 group 1 kickers and 6 group 2 kickers. Using G; to denote that a group i kicker
was chosen, we have

PG =1/3  P[G]=2/3
In addition, the problem statement tells us that
PIK[G=1/2  PIK|G =1/3
Combining these facts using the Law of Total Probability yields
PK] = PIK|G1]P[Gy] + P[K[G2|P[G2] = (1/2)(1/3) +(1/3)(2/3) = 7/18



(b) Tosolvethis part, we need to identify the groups from which the first and second kicker were
chosen. Let ¢; indicate whether a kicker was chosen from group i and let C;; indicate that the
first kicker was chosen from group i and he second kicker from group j. The experiment to
choose the kickersis described by the sample tree:

2/8 Ci oCj; 1/12
39 ¢ 5 @ *Cr 1/4

<6/9 38 ¢ ucy 1/4

C2
5/8: C2 oCp 5/12

Since a kicker from group 1 makes a kick with probability 1/2 while a kicker from group 2
makes a kick with probability 1/3,

P[K1Ko|Cu1] = (1/2)? P[K1K2|C12] = (1/2)(1/3)
PIK1K2|Co1] = (1/3)(1/2) P[K1K2|Cp] = (1/3)?

By the law of total probability,

P[K1Ks] = P[K1K3|Cy1]P[Cy1] + P[K1K5|C12] P[Cy)]
+ P[K1K2|C1]P[Ca1] + P[K1K5|Cpo] P[C2o]
_ 11 11 11 15

41262 64" 912

= 15/96

It should be apparent that P[K;| = P[K] from part (a). Symmetry should also makeit clear that
P[K1] = P[K3] since for any ordering of two kickers, the reverse ordering is equally likely.
If this is not clear, we derive this result by calculating P[KZ\C”-] and using the law of total
probability to calculate P[K;].

P[K2|Cy] = 1/2 P[K,|Cpo] = 1/3
P[K2|Cx] =1/2 P[K2|Cp] = 1/3

By the law of total probability,

P[K2] = P[K2|Cp1]P[Cy1] + P[K2|C12]P[C12] + P[K2|C21]P[Ca1] + P[K2|C22] P[C2]
B 11 11 11 15
T 2127327247312
~7/18

We observe that K; and K are not independent since

2
PKiKo] = ;—2 # (1—78> = PKyJP(Ky]
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Note that 15/96 and (7/18)? are close but not exactly the same. The reason K; and K are
dependent isthat if thefirst kicker issuccessful, thenitismorelikely that kicker isfrom group
1. Thismakesit more likely that the second kicker isfrom group 2 and is thus more likely to
miss.

Once a kicker is chosen, each of the 10 field goals is an independent trial. If the kicker is
from group 1, then the success probability is 1/2. If the kicker is from group 2, the success
probability is1/3. Out of 10 kicks, there are 5 missesiff there are 5 successful kicks. Given
the type of kicker chosen, the prabability of 5 missesis

Pivicd - (g ) /2%a/2°  Pivica - (g ) /323

We use the Law of Total Probability to find
P[M] = P[M|G4|P[G4] + P[M|G;|P[G;]
- (3) (w2 + @3a/38@s)



