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1. (40 points) We Begin and End with Basics:
Prove (if possible) that if a linear transformation L() is continuous. that L(x; + z5) =

L(z1) + L(x9) implies L(ax; + bxy) = aL(x) + bL(x5) Ya,b € R. That is, prove that
for continuous L(), scaling is implied by superposition.

State your reasons if you think a proof is impossible.

HINT: Start with integer a and b, proceed to rationals and then irrationals. Be careful
at each step.

We form a sequence of steps:

z) = L(x + z) = L(x) + L(xz) = 2L(x). Therefore for m a positive integer we have
mz) = L((m — 1)z + z) = L((m — 1)x) + L(z). Proceeding recursively we obtain
mzx) = mL(z). Note also that the same line of reasoning produces L(z) = L(0+x) =
0)+L(z ) which implies that L(0) = 0. We then can say L(x —x) = L(z)+ L(—z) =
L(0) = 0 implies that L(—z) = —L(z). So now we can form L(mx) = mL(x) for all
integer m. So superposition implies scaling for integer scale factors.
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Now as for the rationals, we have r = m/n where m and n are integers. L(mzx/n) =
mL(z/n). But we know that L(z) = L(n(xz/n)) = nL(x/n) so that L(z/n) = L(z)/n
so that L(mz/n) = mL(z)/n and we now have scaling for the rationals.

Now what about irrationals? Let I be an irrational number and let v, be a sequence of
rational numbers with lim,, o1, = I.

We know L(r,z) = r,L(z) since we’ve proved it above. Now define ¢, = I —r,. We
have L(Iz) = L(rpz) + L(epz) = rpL(z) + L(epx). From our development of metric
spaces we know that if L(x) is continuous (or more restrictively, bounded), then if
lim, z,, = * we must have lim,, L(z,) = L(z*). Since €, goes to zero in n we have the
desired result.

2. (40 points) The Excitable Capacitor:

A certain capacitor has voltage-charge relationship Q = —CV and is arranged in series
with a resistor, R, and a voltage source u(t). We will assume the capacitor has zero
charge at time ¢ = 0 and we desire unit charge at time ¢t = 1.

(a) (10 points) Find the differential equation for this series arrangement of resistance
R, excitable capacitor, and voltage source u(t). Why is it called an excitable
capacitor?

dV.(1)

u(t) = i) R+ Ve(t) = ~RO——

+ V(t)



It’s excitable because if you leave just a little voltage on it, it automatically charges
itself without bound. That is, the solution to the homogeneous equation is Ae"/FC.
So unless you leave this capacitor discharged, or R = oo, you’ve got a bomb on
your hands with time constant 1/RC..

(10 points) Is it always possible to find u(¢) which drives the capacitor charge @
to any desired value at any time ¢ > 0 given () = 0 at t = 07

NOTE: If you answer simply yes or no, not only will you receive no credit, but in
addition, I'll find you next term and drive a stake through your heart.

Statespace:
_ Ve u()
° RC RC
Controllability: K = [—1/RC] which is clearly full rank for finite C and R. So in
general, we can find a u(t) which drives us from one state point to to any desired
state point in some non-zero time. The above problem statement is a special case.

(10 points) Find an input u(¢) on (0, 1) (any such input, if it exists) which drives
the capacitor charge to Q =1 at t = 1 assuming () = 0 at t = 0.

The simplest (to me) is to set u(t) = ad(t) and find the appropriate a. You could
also use a step if you’re uncomfortable with singularity matching. Impulse in u(t)
means corresponding impulse (scaled by 1/RC') in V.. This implies a step in 'V,
at t = 0%: de., V.(0F) = £&. Since u(t) is zero for t > 0 we must have

Vilt) = e

So to have Q@ =1 att =1 we need

V(1) = =1/C = e

which tmplies a = ReTe .
(10 points) Now, find an input u(t) on (0, 1) which drives the capacitor charge to

@ =1att=1assuming Q = 0 at £ = 0 AND which minimizes the amount of
energy E supplied by the source u(t).

HINT: Euler’s equation is,
dOF OF _

dt o0& O0r
and

p= [ L u()i(t)dt

where i(t) is the current supplied by the source u(t).
We know i(t) = —CV, and u(t) = V, — RCV, so

B= [ ~(Vt) ~ ROVA)CV (o)t

We then have F(V,, V., t)y=—(V.— RC’VC)C’VC. Ezxpanding
~CV,V. + RC*(V,,)?
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taking the appropriate partials and derivatives and setting to zero we obtain
~CV, +2RC?*V, + CV, =2RC*V, =0

Once again we find that the optimal trajectory for V. is linear; V.(t) = Bt + D
where B and D are constants. Since we require V,(0) = 0 we have D = 0. Since
we require V(1) = —q,/C (where ¢ = 1coulomb) we have B = —q,/C where B
has units of volts per second. Therefore

uo(t) = B(t — RO)

3. (40 points) LTI Stability:

Determine which (if any) of the following characteristic equations have at least one
root with non-negative real part. In each case, state your reasoning (stake through the
heart for insufficient answers).

(a)

(b)

(10 points) s>+ s* + s — 1
Has a negative coefficient so must have at least one root with non-negative real
part.

(10 points) s*> + s* + s+ 1
All positive coefficients so have to use Hurwitz criterion.

i

s not full rank so we must have at least one root with non-negative real part.

(10 points) s* + s* + s+ 10
All positive coefficients so have to use Hurwitz criterion.

i

s not full rank so we must have at least one root with non-negative real part.

(d) (10 points) s* + s + 1 All positive coefficients so have to use Hurwitz criterion.

o)

has negative determinant so there’s non-negative real portion of a root lurking in
there.

4. (40 points) Lyapunov:

(a) (20 points) Is the system energy always a Lyapunov function for an isolated non-

conservative system? Why/why not? Carefully state you assumptions and re-
member that a non-conservative system is one with dissipative losses like friction.



Also remember that “isolated” means the system has no external sources of en-
ergy.

HINT: First write down the formal conditions a Lyapunov function must satisfy.
Assume the strict definition of a Lyapunov function used in your book.

This was (hopefully) a giveaway. The formal statement in your book requires there
to be uniquely one point at which the Lyapunov function is minimized. So just
imagine a system which consists of a mountain range and a marble. The system is
certainly dissipative. But the marble can stop in any of a number of valleys given
an appropriate starting point. So, although energy is certainly decreasing, it’s not
a Lyapunov function in the formal sense. If you balk and say, HEY unless the
mountain is ALL THE WAY DOWN the energy is not minimized, just remember
that there can be many “lowest” wvalleys.

(b) (20 points) Do non-conservative systems always have a single unique equilibrium?
Why /why not? Provide a proof or example.

No. An example was given in the previous part. Another example cited by students
was the rolling ball problem from a previous final. Any point on the “flats” is an
equilibrium (stable). AND you should also remember that equilibriums need not
be stable. Just think of the inververted pendulum (with friction). Two equilibrium
points, but only one is stable AND the energy decreases monotonically.

5. (80 points) Rutgera Univera and the Double Pendulum:

Rutgera Univera has been hired by Positively Pernicious Pendulum, Inc. (PPP) to
design a line of mechanical clocks. Needless to say, Rutgera would like to go with the
time-tested design of a simple pendulum with small deviation about the vertical. Such
a design allows the period of the pendulum to be precisely adjusted by varying the
distance of the pendulum bob from the rotation point.

But of course, the PPP executive committee likes the more elaborate 2-bob pendulum
design shown in FIGURE 1. They say it has more “pizzazz!” Your job is to determine
whether Rutgera can design a stable clock based on the 2-bob pendulum or whether she
should immediately quit and find another job since she may be working for technical
fools.

(a) (30 points) CAREFULLY devise the equations of motion for the 2-bob pendulum.
Any errors here will propagate through the problem and you’ll lose points on later
sections. You may assume completely lossless bearings (no friction) and that the
connecting rods are massless and rigid. Furthermore, you should also assume that
the bobs are point masses.

HINT: Incorporate gravitational forces through potential energy. Assume the
ground position for each mass is it’s lowest possible point.

HINT2: Be VERY careful with your algebra and constantly check units to catch
€ITors.

This is an algebraic pain in the butt. However, I figured you should be provided
an opportunity to flex your analytic muscle. There’s nothing quite like taking a
familiar physical system with interesting dynamics and capturing it in differential
equations. Better than big game hunting!



So, the potential energy is
PE =mygri(1 —cosb) +mag[ri(1 — cosby) + ro(1 — cosby)]
The kinetic energy s
KE= Sy (rifh)? + Sms [(rih)? + (raf)? + 2rirsfif cos(6, — )]

Letting L = KE-PFE and taking partials we have

STE = —m2r1r29192 sin(01 — 02) — Tlg(ml + mg) sin 01
1
% = m2T17'29.10.2 sin(91 - 92) — MaTag sin 92
00,
oL ) :
% = (m1 + mg)’f’101 + m27"17‘202 COS(01 — 02)
1
% = mﬂ%ég + m27"17"20'1 COS(01 - 02)
00y
and now the time derivatives
d or - . NP
E% = (m1 + m2)7"191 + m27’17'202 cos(01 — 02) — m2r17“202(01 — 02) sm(01 — 02)
1
d oL . . L
%5 = m2r202 + 7')’)97'17’201 cos(01 - 02) — m2r17“201 (61 — 02) Sln(01 — 62)
2

Now we form the euler equation in each variable.

%(%Lj — g—aﬁl (my + ma)r26; + morirofs cos(f, — 65)
— m27'17'20.2(0'1 - 92) sin(01 — 02)
+  MoriTe010, sin(f; — 63) + r1g(my + my) sin b,
= (my + ma)r20;, + morir20 cos(6y — 05)
+ myriro02sin(fy — 05) + r1g(my + my) sin 6,
= F01
%g—é — g—é = my‘%ég + Mo To0, cos(f; — 6s)

m2r1r29:1 (91 — 92) sin(f; — 65)
—  mar1rah10ssin(6; — O2) + maoragsin b,
= mzrgéz + m2T17‘2é1 COS((91 — 02)
— myrirof2sin(f; — 05) + marag sin by
= F92

and notice that we have two equations and in each equation both 0, and 0y appear.
That does not make us happy campers since we’d really like to move toward state
space form. Those of you who stuck with the old rotating book problem noticed a
stmilar conundrum.



However, we can solve for 6, as

. . ) 1
m2T292 = —m2r101 COS((91 — 92) + 777@7"19% sin(01 — 92) — Mag sin 02 + —F52
T2

and then substitute to obtain
mgrlé% sin(91 - 92)

m27“1¢91 COS(Hl — 02)
—Meogsin by + ng
+m2r1r20 sin(f; — 63) + r1g(my + mo) sin 6,
= F01

(my 4 ms)r20;, + 71 cos(0; — 6)

which simplifies to yield

[my + masin® (61 — 02)]r16; + Smary sin[2(6; — 6,)]6?
+% COS(Gl — 02)F92 —+ MmoTo sin(91 — 92)03
—mgg sin Oy cos(0; — 63) + g(my + my) sin 6,

1

= HFOI

Likewise we can isolate 0, as

1 [ F01 — m27”17'29.2 cos(01 - 02) ]

6, = :
' —moriTa02 sin(f; — B) — r1g(my + my) sin b,

(m1 +ma)r?
Substituting yields
. ..
—Fg - m27'202 COS(91 - 02)
0, —0 1 o
s 00801 — 02) [ —mgrof2sin(f; — 0y) — g(my + my) sin 6,

m2T202 +
—m2r191 sin(01 — 65) + magsin by
= LFGQ

T2

And simplifying as before we obtain

mary sin[2(6; 02)]03

m2T2(1 o —|—m COS (01 02))02 m
Tl(m":ﬁ cos(0; — 6) Fy, — mory sin(6; — 02)0

“+meog[sin B, — sin 0 cos(6; — 65)]
1
= EFQZ

We now have two equations with 0, and 0, in terms of lower order derivatives of
0, and 0. Furthermore, we note (with no small degree of satisfaction) that the
multipliers of 0, and 6, are always nonzero. Therefore we may completely isolate

01 and 02 as
%mgrl sin[2(01 — 02)]0%

é _ 1 +% COS(Hl — (92)F92 —+ mars sin(01 - 92)(9%
e [my + mysin?(0; — 0)]r1 | —magsin By cos(fy — B) + g(my + my) sin b,
1
—LF,



and

| — oy mar sin[2(6, — 6,)163 |
; 1 +7rl(m’?im2) cos(f; — 02')F91
2 = — —mory sin(f; — 6,)60?
1— ma 2 9 _ 0 271 ( 1 2)V1
mars( ma+ms €05 (01 = 62)) +mag[sin By — sin B cos(6; — 65)]
1
L Tt e J

We are now in a position to start talking about linearization of the equations and
casting them in statespace form.

(10 points) Find a stable stationary POINT for this system and linearize about
it.
NOTE: Even if you munged the first part, you might still be able to recover here.

The first thing to do 1s use what approzimations we can. First off, the only stable
equilibrium is 0, = 0y = 01 = 0y = 0. So we first use small 0; approximations.
We will assume that mi/my > (0, — 03).

m27°1(01 - 92)9% + %ng

él ~ = +maro (6 — 92)93 — mggbs + g(my + my)0;
miT _1p
1 61
and
0 1 ~ Gty M2r2 (61 _.32)0% + ity L
2 —m2r2(1 — mﬁfmz) —m2r1(01 — 92)(191 + ng(02 — 91)

~-1F,
Linearization of the remaining nonlinear terms yields

Mag 6, — g(my + my) 1 1

91 =~ 01 =+ —2F91 — F92
miTy mir miry mirire
and ( ) )
. mi + ms)g mi + Mo
Oy ~ (0 — Oy) + ———5 Fp, — Fy,
m1To mimeoTry miTriTe

We put it in statespace form for later use. Let xT =] 60, 6, 0, 6, |. Then we
have

0 0 1 0 0 0
X = g(m?-i—mz) mgg 01 X + (1) . 01 [ F01 ]
T mar miri 00 m1r§ miTir2 F52
(m14+m2)g __(mi+ma)g 0 1 mi+mo
mirs mirs mirirs mimars

with output equation
bb=y=[1 0 0 0]x

(10 points) The output of the system is 6;(¢), the angular displacement of the
upper pendulum rod from the vertical. Derive an expression (if possible) for the



period of the linearized system in terms of pendulum bob masses m; and mo as
well as pendulum rod lengths r; and rs.

Well, the characteristic polynomial of the A-matrix is

_ =0
mir miTo m%T17"2 m%ﬁ?"z

e (g(ml + my) N (my + m2)g)82 N g (my +m2)?  ma(my +my)g?

We see immediately that we’ll have roots of the form s> = a,b which means
s = ++/a, ++/b. The quadratic formula yields

mi+m 1 1 1 1 2 m
252:u —(—+)ty/5+5+ (1-2 !
my T To r{ Ty TiT9 m1 + mo

The term in the radical is at most (;- + .-)* (my = 0) and at least (= — ;-)*
(mi — o). Therefore 25> < 0 if my > 0 which means that we have purely
maginary roots

my+m 1 1 1 1 2 m
s== MJ—(—+—)1\/—2+—+—(1—271)
2m1 T1 T2

2 r2 oy my + my

That is, there are two natural frequencies. But which is dominant at the pivot
point 01 will depend on the relative values of the masses and the relative values of
the rod lengths.

(80 points) Assume the input to the double pendulum system is applied through
torque (call it u(t)) at the upper pivot point which would naturally be attached
to the clock housing.

Should Rutgera quit or stay at PPP, Inc.? Be sure to justify your answer by
looking at controllability and observability of the linearized system.

This is a tricky question and a number of answers were possible. Since there are
two natural frequencies, we could easily have very irregular (aperiodic) motion at
the pivot point 6,. So, the short answer is that unless the parameters ri,ry, my, mo
can be precisely chosen so that periodic motion is guaranteed, Rutgera should run
away as fast as possible.

However, I asked you to look at controllability and observability. You probably
knew why as you worked the problem. The underlying question is whether it is
possible to control the system from the clock housing, maybe using some sort of
feedback. I was considering putting this explicitly in the problem, but decided
that it would be too much to ask. So, let’s just look at controllability first: K =
[B|AB|A%B|A®B]. However, remember that we’re assuming no input Fp, so the
second column of the B matriz above disappears and we have

0 1 0 _g(ml—l—mz) __mag
m 2 2 2 2.2
17‘2 m17‘17“2 mlTl’l”Q
0 1 0 (m1+m2)g (m1+m2)g
2,3 + 2 2
K = mirirTa miTs miT1TS
- 1 0 _g(mit+mz)  mag 0
m 2 2 2 2.2
17"2 m171T2 mlrlrz
__1 0 (m14+m2)g + (m1+ma)g 0
mirire m%rg m%rﬂ%

Whether this matriz is full rank boils down to whether the first and third columns
are linearly independent and this determination boils down to whether we can find



mi, Mg, 1, Te such that the determinant of the two by two matriz formed by the
lower entries of the first and third columns of K 1is zero:

(m1+ma)g  (m1+my)g (g(ml +my)  mag )

( + 4)_

3,.5 3 3,.2,.3  .3,3,2
mirsy miriry mirirs miriry

=0

which we simplify to

1 1 mo 1 1
(5+ =)+ 32 =0
TS 1Ty my + Mo 7 Ti{T

and then put over a common denominator

—(r3+r7‘—|— 2 Ty —riry) =0
1 172 2 — Tilrg) —
rirs my + me
and m
2 2 2 2 2\
m1+m2

Whether this expression is greater than zero depends on the ratio of masses. So
the system is not in general controllable. But if Rutgera insists that ry > ro, it is
controllable. This is a slightly weird condition that I'm not really sure I believe.
Check the algebra carefully yourself just in case. I've already been over it a number
of times and can find no error, but neither can I establish any physical intuition
(for small motions).

If it IS controllable, we could then think about feedback control to stabilize the
system (make it really well-behaved). In fact, one could even imagine getting
the assembly to behave like a single-bob pendulum (0, = 65). But in order to
do that we’d need to know the state of the system so we could tailor our input
appropriately.

So it it observable? MT = [CT|ATCT|(AT)2CT|(AT)3CT],

1 0 0 0
0 0 1 0
M = __g(mid+ma)  mag 0 0
miTi miTi
0 0 _g(m1+m2) ma2g
miTi miri

which s full rank. So the system is observable.

So maybe Rutgera should stay put and develop really neato clocks with double (or
even triple) pendulums. I've never actually seen such a clock, but I think it would
be really neat.

Oh and one other tidbit. In general this two pendulum system is chaotic (in the
mathematical sense). If you ever are in San Francisco, go to the Exploratorium.
Near the entrance they have this two pendulum assembly which you can excite
through 01 just as we did in this problem. Start gently and it’s well behaved. After



Figure 1: Double Pendulum: all pivot points have full rotational freedom. Input torque may
be applied at topmost pivot.

a certain point though, you cannot predict where the thing is going. It jerks around
crazily in an engrossing sort of way.

Oh, did I say you CANNOT predict? That’s a figure of speech. The system is still
observable so in principle, with perfect measurements you could predict the state.
The problem is that even small errors in state estimation/observation translate
wnto large errors in where you would have predicted the system to be some time
later (chaos).

likely, iof you just stay far enough away, the person will club themself to death.
But if you stand and fight, you won’t be able to predict where the things will
strike!

For example, have you ever tried to use nung-chucks (my phonetic spelling)? The
number of times I knocked myself in the head (and worse) with the things while
trying to be Bruce Lee is emabarassing.
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