1. (50 points) **PN Sequences:** You are to build an in-class CDMA system. We will use a 20-bit maximal-length pseudo-random noise (PN) sequence generator with taps at 20 and 17 as depicted in FIGURE 1. Bits 20 and 17 are exclusive-OR’ed and the result fed back into the shift register. Bit 20 is defined as the shift register output. The 20-bit binary number x_0 is defined as the initial shift register (SR) state.

![Figure 1: 20-bit Maximal Length PN Shift Register. Second part of figure (Codeword) is for problem 2.](image)

(a) (10 points) What is SR output if $x_0 = 0$.

(b) (10 points) What is the state of the SR after 20 shifts if $x_0 = 00001$ (hex)?

(c) (10 points) Is this shift register sequence periodic for non-zero x_0? What is its period?

(d) (20 points) Please verify your periodicity result numerically (Matlab, C, whatever programming language you’re most comfortable with) so that the world believes you.
2. (150 points) **Classroom CDMA:** We now incorporate the PN sequence generator above into a CDMA system. As you already know, CDMA system employ user codewords (signatures) to transmit information. During bit interval k, user m has codeword s_{mk} composed of ± 1s. User m sends bit $b_{mk} = \pm 1$ by broadcasting $b_{mk}s_{mk}$. Notice that unlike in class, the codeword here changes with each bit interval. The receiver receives

$$r_k = \sum_{m=1}^{M} a_{mk} b_{mk} s_{mk}$$

where a_{mk} is the amplitude with which the signal is received. We have previously assumed $a_{mk} = 1$ for all users at all times, but clearly this was a pedagogical simplification. Users at different distances from the receiver will have their signals received with different powers. Also, users move around and the environment changes (a truck passes by, for instance) which leads to time-dependence.

The receiver then decodes each user’s bit in interval k by using a matched filter

$$\hat{b}_{mk} = \begin{cases} 1 & r_k^T s_{mk} > 0 \\ -1 & r_k^T s_{mk} \leq 0 \end{cases}$$

In this problem, I will be the base station and will compose messages to each of you which I will assemble and broadcast to the class. Your codewords will be based on the binary representation of the 2nd, 3rd and last 4 digits of your student ID (6 decimal digits total). This 20-bit number will be the initial “seed” S_m for your PN-sequence generator: the least significant bit (LSB) of your number will be bit 1 in the shift register while the most significant bit (MSB) will be the 20th. 1 \rightarrow 1 and 0 \rightarrow −1, each successive 128 “slice” of the resultant sequence will be your successive codewords. That is, using seed S_m, the first 128 bits (ordered LSB to MSB) output by the shift register will comprise s_{m1}, the next s_{m2} and so on. Finally, your messages will be coded in 7-bit ASCII format (MSB first, left to right). You can find ASCII tables on the Web.

(a) (20 points) There are 20 people in the class. What is the probability of bit error for each person. You may assume that the PN sequence is actually truly random and that users transmit equally likely ± 1 i.i.d.

(b) (30 points) Please derive an expression for user m’s SNR which includes the received amplitudes a_{nk}. You may assume that $a_{nk} = a_{nl}$ (i.e., no time-dependence on received signal amplitude). Which user has the lowest probability of error?

(c) (100 points) Please write a program that will take the sequence of digits I supply and decode your personal message.
3. **(100 points) Can CDMA Be Asynchronous?:** We have assumed that user signaling intervals are aligned so that their codewords begin and end at the same time. For multiuser systems with fixed codewords, misalignment is a problem. However, in the previous problem, we introduced a system where the sequence of bits which describe the codeword stream for a given user is essentially random – the CDMA system in the previous problem does not use fixed codewords for each user.

Assume that this “random codeword stream” method is used and that the codewords are truly random with i.i.d. chips and that the receiver for user m IS synchronized to user m’s transmissions. You may also assume that all users are “chip-synchronous” so that the chip intervals are synchronized. However, you may NOT assume that other users’ transmissions are synchronized at the codeword level.

(a) **50 points** Please carefully set up the problem definition and then derive an expression for the SNR of a given user (say user 1). You may assume that all users’ transmissions are received with equal power (i.e., $a_{mk} = 1$ for all users).

(b) **(50 points)** Discuss the utility of your result given that there will be multiple cells in any real wireless system.

(c) **(50 points)** Typical CDMA systems operate in a 1.25 MHz bandwidth. Please provide a rough estimate of the chip duration (and then for good measure, the bit rate assuming 128 chips/codeword). Roughly how well must chip synchronization be maintained in order for this CDMA system to operate properly.