
ADAPTIVE EQUALIZATION NOTES
C. Rose

In your book, the concept of the zero forcing equalizer was explored. The
overall model assumes an impulse put into a channel and the channel output x

�
t �

sampled at times nT to produce the discrete time sequence xn � x
�
nT � . The zero-

forcing equalizer is a FIR filter with tap weights wk applied to the input x
�
nT � .

Then, you looked to find tap weights which make the overall system impulse
response (in discrete time) be a single lollipop at the origin and zero everywhere
else (in a window to either side of size � N). That is, you want to make the system
output yn � xn � wn � δ

�
n � (for n ��� N � � N � 1 	
	�	 0 � 1 � 2 ��	
	�	
	 N). That � means

discrete convolution.
Assuming that the tails of the channel impulse response drop rapidly as com-

pared to NT , this means that impulses put into the channel system at times kT
have almost no effect on each other because the overall response to an impulse at
kT is a value of yn � δ

�
n � k � and the channel response outside a double-sided

window of size N is assumed essentially zero. This roughly corresponds to the
zero ISI condition where a pulse at 0 has no effect on pulses at times nT .

We found that the optimal tap weights could be found by inverting a matrix
composed of channel impulse response samples between � N. Unfortunately, this
is time consuming for larger N and it requires someone to tell us the channel
characteristics (the channel impulse response) and when it changes significantly
— bummer! All this is completely in the book, by the way.

We then moved to adaptive equalization. The problem here is slightly differ-
ent. Rather than trying to force zero ISI by inverting matrices we formulated it
as an error minimization problem. We have the same input sequence xn to our
equalizer with tap weights wk, but this time we don’t assume anything about the
channel and simply try to find wk which minimize an error criterion.

Well, in order to calculate error, we need to be pretty sure what the right answer
is. So what we assume FIRST is that the transmitter is sending a known sequence
of digits an over the channel. In the best of all possible worlds (read Candide) the
output of the channel would be exactly an. However, evil is afoot and what we get
is xn. So what we want our equalizer to do is take the sequence xn and produce
(via discrete convolution) a sequence yn. And to finish we want the yn to be as
close to the known an as possible!

This closeness is specified by an error function, our old friend mean square
error e2

n �
�
yn � an � 2 and we want this to be as close to zero as possible over all n.

1



So we form

E � E � e2
n � � E

�
� N

∑
k ��� N

wkxn � k � an � 2 �
Now, E depends upon how well our equalizer weights are chosen. So what we
want to do is figure out which weights minimize E . We can therefore think of E
as a function of the weight vector w, or E

�
w � .

Well, when we see “minimization” it’s almost a reflex to take derivatives, set
them to zero and declare extremum. The derivatives in question are

∂E
∂wk

� � 2E � enxn � k � � � 2Rex
�
k �

where R
� � is the cross correlation function between e and x. In a single dimension

we know that the second derivative greater than zero everywhere implies convex-
ity so that a unique minimum exists. Alas, we also know that for multivariate
functions, the picture is not so rosey! More on this at the end!

The development in the text simply assumes that the minimum can be found
by taking first derivatives and setting them to zero. It also develops a method of
iteratively finding the minimizing weights by essentially “sliding down the error
hill”. This means that you modify your weights in a direction opposite to the
gradient of the error surface. For example, say your initial guess is w

�
0 � . You

modify your guess by forming for each k

wk
�
1 � � wk

�
0 � � 2µRex

�
k �

where µ is some suitably small “step size”. You don’t want the step size too small,
otherwise you never get where you’re going. Likewise with step size too large,
you overshoot where you’re going and may ping pong around but never reach the
minimum. By the way, don’t worry about the factor of 2 difference between the
above expression and your book. That factor is easily subsumed in the µ.

The final practical whistle is to recognize that you can’t really know the cross
correlation function, so you fake it by making a guess as R̂ex

�
k � � enxn � k, both

factors which are available to you. You then modify your algorithm to

ŵk
�
1 � � ŵk

�
0 � � 2µenxn � k

and at some point you stop when the error is small enough (stopping rule).
There’s a neato keano interpretation for when you stop in the ideal case. That

is, you stop when Rex
�
k � � 0. Assuming that E � xn � � 0 and E � en � � 0 that means

2



that you stop when the error and your observable xn are UNCORRELATED. If
we use uncorrelated as a surrogate for independence, that means we stop when
the input sequence to our equalizer has no more to say about the error we gen-
erate! That is, the incoming observations add no new information about how to
reduce the error and we’ve done as well as we can. This principle of orthogonality
(orthogonal usually means independent when used in the random variable sense)
is very useful and pops up all over the place in communications and estimation.

Well, that’s all well and good, but remember that in order to calculate en we
have to assume we know an. But if we always know an why are we bothering to
send it? The answer is that we don’t always send a known sequence. We only
send that sequence while “training” the equalizer. Thus, the known sequence is
called a “training sequence” for the equalizer and we make this training sequence
long enough so that we’re pretty sure we’ll get close to the optimal weights w �
which minimize E .

Once we’re done training, however, we begin to send data. And here’s the
neat part! If we did a good job equalizing and the channel characteristics don’t
change rapidly, then our equalizer outputs yn are pretty close to the unknown an.
Let’s assume that the an can take on values � 1. If that’s the case, then as the
channel changes the equalizer outputs will begin to drift from � 1. This will not
immediatly affect our ability to correctly determine the an. For example, if the
equalizer puts out yn � 0 	 8 then we’re probably safe guessing that an � 1.

HOWEVER, we have a nonzero en and we can use these small errors to correct
the equalizer weights. The equalizer is then in “adaptive mode” as opposed to
“training mode” and tracks slow channel changes by monitoring the error and
adjusting the weights just as it did for training mode. The only difference is that
in training mode the correct an were known exactly whereas in adaptive mode,
the guesses at an are assumed accurate if we did a good job of training initially.
Of course, if the channel changes too rapidly, then we suck at guesstimating the
an and the weight updates will suck too. Then, the error begins to grow and the
equalizer stops translating data and requests a drop back to training mode. If the
channel has gotten so bad that it can’t be equalized, then the line is dropped and
you curse it soundly under your breath since this happened near the end of a large
web page transfer.

So that’s basically it. However, WE ARE ANALYSTS! Thus, there’s LOADS
of things we’d need to prove before we could even begin to believe that this RE-
ALLY works. We’re not going to prove that the stochastic update algorithm (the
weight update equation with all the hats in it) converges. The only thing we’re
going to prove is that setting the error derivatives equal to zero does guarantee we

3



find the optimal weights. To do this we’re going to prove that E is convex in the
weights wk.

We have to fall back on the convexity definition from class. A function is
convex if for 0

� λ � 1 and any x1 and x2 we have

f
�
λx1 �

�
1 � λ � x2 � � λ f

�
x1 � �

�
1 � λ � f

�
x2 �

This means that the surface always lies below the line drawn between any two
points. It’s pretty easy to show that in a single dimension, the old second derivative
non-negative is exactly equivalent to this statement, but we’ll forego that pleasure
here.

Now, to the problem at hand. Our function is E � � � ω � . To make life simpler
we’ll write ∑k wkxn � k as ωT x. This leads to

E � � � ω � � E � � an � ωT x � 2 � � E � a2
n � 2anωT x � �

ωT x � 2 �
We then look at

E � � an �
�
λω1 �

�
1 � λ � ω2 � T x � 2 �

which is equivalent to

E � a2
n � 2an

�
λω1 �

�
1 � λ � ω2 � T x ��� � λω1 �

�
1 � λ � ω2 � T x � 2 �

and try to see if it’s less than

λE � � an � ωT
1 x � 2 � � �

1 � λ � E � � an � ωT
2 x � 2 �

Well after playing around a bit (removing like terms from each side such as E � a2
n �

on the left and right) and regrouping (like we did in class) we find that

E � � an �
�
λω1 �

�
1 � λ � ω2 � T x � 2 � � λE � � an � ωT

1 x � 2 � � �
1 � λ � E � � an � ωT

2 x � 2 �
and the function E �ω � is indeed convex in ω.

TADA!!!!!!!

4



decision
a_na_n

a_n

y_n
x_n

adapt +

h(n) c(n)

Training

Operation

-

Figure 1: Here’s a representative figure of the whole shebang

5


