
THE STATE UNIVERSITY OF NEW JERSEY

RUTGERS
College of Engineering

Department of Electrical and Computer Engineering

QUANTIZATION NOTES
C. Rose

1 Optimal Quantization

We start with a signalx(t) and perfectlysample it (at the Nyquist Rate or better) to obtain a
sequence of real numbers{xk}. We take this sequence andquantizeit to obtain the approximate
values{x̃k} = {Q(xk)}.

Quantization is necessary because we cannot store sampled values with infinite precision.
Please note that this fact has little to do with digital computers and wordlengths, etc. The physical
fact is that no matter what the measurement/sampling procedure, there is some uncertainty. And
this uncertainty (usually called the granularity) limits the precision with which we can specify the
measured values.

For example, do you weigh50kg or 50.0000000001kg? It is usually sufficient to measure the
weight of people to the nearest kg or so.

Now we need a way to specify the quantization functionQ(x). More precisely, we need a way
to measure the “goodness” of any givenQ(x) for any given set of samples{xk}. To this end we
introduce the quantization error function (the usual square difference)e2

k = (xk − Q(xk))
2 and

then average over a large number of samples to obtain the mean square error

ē2 =
1

N

∑
k=1

N(xk −Q(xk))
2

Well, for N large enough, the summation begins to look like an expectation with respect to the
variablexk. The basic idea is to form a “relative frequency function” (aka probability function) for
the variablexk. We call this functionfX(x) and our mean square error becomes

ē2 = EX [(x−Q(x)2] =

∫ ∞

−∞
fX(x)((x−Q(x))2dx

What’s next? Well we’re interested in findingQ(x) which minimizes the mean square error.
To do this we note that a quantization function takes values ofx and “bins them”. That is, it takes
values in a given range, (saya1 < x < a2) and maps those values to a single value (q2). There are
a finite number of quantization levels (if this were not so, then how could we represent and store
these values?).

So, we formally define anN -level quantizerQ(x) as follows:

Q(x) =


q1 x < a1

qi ai−1 < x ≤ ai

qN x > aN−1

1



We now have2N−1 parameters to choose in our minimization of the mean square error:{a1, ...aN−1}
and{q1, ...qN}.

In general, multivariate optimization is a difficult task. However, we’re going to close our eyes
and assume that simply finding where the first partials are zero with respect to our variables will
provide a solution to the error minimization. That is, we seek a set of parameters{a1, ...aN−1} and
{q1, ...qN} such that

∂e2

∂ai

= 0

i = 1, 2, ...N − 1 and
∂e2

∂qi

= 0

i = 1, 2, ...N
Sincee2 is an integral, we’ll need Liebnitz’ formula:

d

dx

∫ z(x)

w(x)

g(x, t)dt =
dz(x)

dx
g(x, z(x))− dw(x)

dx
g(x, w(x)) +

∫ z(x)

w(x)

∂g(x, t)

∂x
dt

After taking derivatives we end up with:

(ai − qi)
2 = (ai − qi+1)

2

Expanding both sides and rearranging we obtain

ai = (qi + qi+1)/2

In words – the bin cutoffai is the AVERAGE of the surrounding quantization levels. Lovely, isn’t
it?

We also have:

−2

∫ a1

−∞
(x− q1)fX(x)dx = 0

−2

∫ ai+1

ai

(x− qi+1)fX(x)dx = 0

and

−2

∫ −∞

aN−1

(x− qN)fX(x)dx = 0

But we note that these can be rewritten as∫ a1

−∞
xfX(x)dx = q1

∫ a1

−∞
fX(x)dx

∫ ai+1

ai

xfX(x)dx = qi+1

∫ ai+1

ai

fX(x)dx

and ∫ −∞

aN−1

xfX(x)dx = qN

∫ −∞

aN−1

fX(x)dx

Then we note thatf(x|x ∈ (c, d)) = f(x)/Prob(x ∈ (c, d)). We then have:∫ a1

−∞
xfX(x)dx = q1Prob(x ∈ (−∞, a1))

2



∫ ai+1

ai

xfX(x)dx = qi+1Prob(x ∈ (ai, ai+1))

and ∫ −∞

aN−1

xfX(x)dx = qNProb(x ∈ (aN−1,∞))

Rearranging we then have
q1 = EX [x|x < a1]

qi+1 = EX [x|ai < x ≤ ai+1]

and
qN = EX [x > aN−1]

The quantization levels are the CONDITIONAL MEANS ofx in the quantization interval!!!!!
The two conditions, (conditional means for theqi and the mean relationship betweenai and

qi, qi+1 are together called the Loyd-Max conditions. These conditions are necessary (BUT NOT
SUFFICIENT) for any solution to the mean square quantization error minimization problem. The
reason for insufficiency is that without evaluating a nasty expression involving the cross partials,
we have no way of knowing whether the extremal point we find when setting first partials to zero
is 1) a max or a min, and 2) whether it’s unique.

But we usually just accept on faith that if we can find sets{qi} and{ai} which satisfy Loyd-
Max we’ve found the minimum.

You should try to prove on your own that “Loyd-Max” implies if the probability distribution
(relative frequency of samples) of a function is symmetric about zero, then the quantizer function
levels have odd symmetry about zero and that the quantizer bins sizes are symmetric about zero.
How about if the functionfX(x) is symmetric about it’s mean? IsQ(x) symmetric? Where?

2 Quantization Noise

Let’s take a peek at how dynamic range (amplitude range over which the signalx(t) runs) affects
quantization. Let’s assume for simplicity that our signalx(t) is bounded in amplitude between
±A. Now we assume that our quantizer bins are all the same size∆. This is called a uniform
quantizer, by the way. With both bin size and quantizer step size∆q = qi+1− qi ∀i, it’s also called
a uniform quantizer but this latter one is “more” uniform the the previous.

Well, let’s assume that our quantizer bins are small enough that GIVENx falls into a particular
bin (ai, ai+1), the probability distribution ofx over that bin is essentially uniform

Well, that means that the difference betweenx and it’s quantized valueQ(x) is going to be a
continuous uniform random random variable on(−∆/2, ∆/2). That is, for samplexk, the errorek

is a uniformly distributed random variable on the interval(−∆/2, ∆/2).
So, now let’s look at the energy/power in our signalxk. This isE[x2

k] ≡ Px. Now consider the
energy/power in the error signal. This will beE[e2

k], but sinceek is uniformly distributed with zero
mean we haveE[e2

k] = ∆2/12.
Now, the signalx(t) runs between±A and let’s assume we haveN = 2b quantization bins.

This means∆ = 2A/2b. We can considerv the number of quantization bits in our A/D, if you like.
Well, a useful measure of fidelity between the quantized signal and the original signal is sig-

nal power divided by the quantization noise power (E[e2
k]). This is usually called the signal to

quantization noise ratio or SQNR for short.
We have

3



SQNR= Px/∆
2/12 =

3 · 22bPx

A2

Here are some punchlines we can take from this expression: We’ll assume fixed signal power,
Px

• For given amplitude variation (A), also called dynamic range, if you increase the number of
bins in your quantizer (increaseb) your SQNR goes up quickly (geometrically inb).

• For fixedb, if the signal is “peaky” (large dynamic rangeA but mostly stays small so that
power does not exceedPx) then your SQNR gets shot in the foot (asA2) as the dynamic
range increases.

So, that’s why people kept striving to get wider (more bits) A/D converters. The SQNR drops
quickly. This is also why music signals are devilish. You’re going along listening to a soft flute
and then a cymbal crash smashes in on you or the horns come in.

3 Companding

Uniform quantizers are easier to design and build than non-uniform ones. But most signals (es-
pecially music and voice signals) do not have uniform distributions on amplitude. They cover a
wide range of amplitudes but dwell mostly at moderate values. But we’d still like to use uniform
quantizers because they’re cheap and plentiful.

The way we usually get around this problem is by optimally “companding” signals. For music,
we COMPRESS the signal where our ears don’t care much and make sure they’re very carefully
represented in ranges where we do care. That is, the EXACT reproduction of that infrequent
cymbal crash is probably not as important as to have a crystal clear sound for the normal amplitude
levels (i.e., strings, but not LOUD electric guitar riffs). We then apply a uniform quantizer to
the compressed signal. This is EXACTLY equivalent to optimally designing a quantizer if the
compression is optimally designed.

To recover the signal the inverse quantizer (D/A) is applied and then the inverse of the com-
pression (EXPANSION) is applied – thus the name “companding”. Some typical companding
functions for music and voice follow. We always assume the that maximum amplitude of the
signal is known and the waveform is normalized by the amplitude. Thus,|x| < 1.

• µ-law

g(x) =
log(1 + µ|x|)
log(1 + µ)

sgn(x)

whereµ is the companding factor. For small signal amplitudesg(x) is basically linear inx
but saturates asx grows.

• A-law

g(x) =


A|x|

log(1 + A)
sgn(x) 0 ≤ |x| ≤ 1/A

1 + log(A|x|)
log(1 + A)

sgn(x) 1/A ≤ |x| ≤ 1

whereA is a factor similar toµ in µ-law. For A-law, the linear region is precisely defined.

For largerA andµ, the compression functions are similar in shape, but for smaller values ofA and
µ (A = 2 A-law has a sharp breakpoint.

4


