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There are THREE questions. You have the class period to answer them. Show all work. Answers given
without work will receive no credit. GOOD LUCK!

1. (50 points) Pulse Amplitude Modulation: Consider the signal

r(t) = m(t)
∞

∑
k=−∞

p(t − kT )

where m(t) is program material bandlimited to ±W Hz and p(t) is an arbitrary waveform
such that the sum ∑∞

k=−∞ p(t − kT ) exists.

(a) (20 points) Suppose p(t) = δ(t). What condition on T insures that m(t) can always be
recovered from r(t)?
SOLUTION: This is the form used to derive the Nyquist sampling theorem. We must
have T < 1/2W.

(b) (20 points) Now suppose W = 10, T = 10−3, and p(t) = sinπt
t . Since p(t) exists for all

time, you’ll notice that the pulses p(t) which comprise ∑∞
k=−∞ p(t −kT ) OVERLAP. If

we apply an ideal band pass filter H( f ) = u( f +1010)−u( f +990)u( f −990)−u( f −
1010) (where u() is the unit step function) to r(t), show how can m(t) be recovered
from r(t) (or not).
SOLUTION: From class we know that the pulse sum, since it’s periodic, is going to
be a set of impulses in frequency separated by 1/T and scaled by the spectrum of p(t).
This can be easily derived by noting ∑∞

k=−∞ p(t − kT ) = p(t) ∗ ∑∞
k=−∞ δ(t − kT ) We

know that the Fourier transform of ∑∞
k=−∞ δ(t − kT ) is 1

T ∑∞
k=−∞ δ( f − k/T ). Convolu-

tion in time domain implies multiplication in frequency domain so F [

p(t)∗∑∞
k=−∞ δ(t − kT )

]

=

P( f ) 1
T ∑∞

k=−∞ δ( f − k/T )

However, the spectrum of p(t) (a sinc pulse) in this case is nonzero only for | f | ≤ 1.
So, the spectrum of r(t) is a scaled replica of M( f ). Since m(t) is band limited to ±10
Hz, the output of the bandpass filter is identically zero and m(t) cannot be recovered.

(c) (20 points) Now suppose W = 10, T = 10−3, and p(t) = sin105πt
t . Since p(t) exists for

all time, you’ll notice that the pulses p(t) which comprise ∑∞
k=−∞ p(t − kT ) OVER-

LAP. If we apply an ideal band pass filter H( f ) = u( f + 1010)− u( f + 990)u( f −
990)−u( f −1010) (where u() is the unit step function) to r(t), show how can m(t) be
recovered from r(t) (or not).
SOLUTION: From class we know that the pulse sum, since it’s periodic, is going to
be a set of impulses in frequency separated by 1/T and scaled by the spectrum of p(t).
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However, the spectrum of p(t) (a sinc pulse) in this case is nonzero only for | f | ≤ 105.
So, the spectrum of r(t) is a bunch of scaled shifted replicas of M( f ) each centered
at f = 103k where k is an integer. Since m(t) is band limited to ±10 Hz, the output
of the bandpass filter is proportional to M( f + 103)+ M( f − 103) and we can use an
envelope detector (or synchronous AM demodulation to recover m(t).

2. (50 points) Quantization:

(a) (20 points) What is the purpose of a quantizer? State your answer in words (no more
than a short paragraph). NOTE: this is not an optimality question, just a simple question
about what a quantizer is used for.
SOLUTION: The purpose of a quantizer is to approximate samples (usually of a wave-
form) using a finite set of amplitude levels. Such quantization is a precursor for digital
transmission of a signal since samples of a continuous real-valued waveform cannot
otherwise be represented with a finite number of bits.

(b) (30 points) We have seen in class that an optimal quantizer function Q(x) seems to
always be non-decreasing. Please PROVE that this observation is true (or not). You
may assume that the PDF of X , the random variable to be quantized, exists and is non-
zero for all X ∈ ℜ. HINT: start from the Loyd-Max conditions and remember how
these conditions were derived.
SOLUTION: For quantization levels qk and bin dividers xk, we have Loyd-Max:

xk =
qk+1 +qk

2
and

qk = E [X |X ∈ [xk−1,xk)]

We need to prove that qk+1 ≥ qk or

E [X |X ∈ [xk,xk+1)]−E [X |X ∈ [xk−1,xk)] ≥ 0

Well, by definition, the bin-dividers xk are ordered from smallest to largest. That is
xk+1 ≥ xk. Therefore, the intervals [xk−1,xk) and [xk,xk+1) are consecutive and disjoint.
Thus, for any PDF on X we must have

E [X |X ∈ [xk,xk+1)] ∈ [xk,xk+1)

and
E [X |X ∈ [xk−1,xk)] ∈ [xk−1,xk)

which immediately implies

E [X |X ∈ [xk,xk+1)] ≥ E [X |X ∈ [xk−1,xk)]

and thus qk+1 ≥ qk.

3. (50 points) Cora and the Quantizer/Coder From Hell:

Cora the communications engineer has been hired by Mephisto Incorporated to design a
communications hot line (tee hee) for the Prince of Darkness himself. The Prince wishes to
use the hot line to remotely measure the temperature, x(t) in various parts of his domain. As
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one might imagine, the sample sequence for the temperature is constantly increasing. In fact
in one particular area the sampled temperature follows

xn = n/2

Assume Cora needs to encode and transmit this sequence.
Cora has a choice of two systems. The block diagram for the first scheme is given in FIG-
URE 1. Basically, a direct difference is computed for the input signal xn and input to a 1-bit
quantizer. A coder then outputs a binary 1 or 0 depending upon whether the quantizer out-
put is +1 or −1 respectively. At the receiver, the 1’s and 0’s are converted into ±1s and
cumulatively summed to obtain x̂n.
The block diagram for the second system is shown in FIGURE 2.
In this problem we will evaluate the effectiveness of both systems. For all parts assume that
ŷ0 = 1 and qn = 0 for n < 0.

(a) (10 points) For system A in FIGURE 1, sketch the discrete sequence ŷn for n = 0,1...10.
What is the corresponding binary code sequence?
SOLUTION: The first coder only codes the difference directly, and the difference is
always positive. Thus, the coder output is ŷn = 1 and the binary output is 111111... .

(b) (10 points) For system B in FIGURE 2, write down expressions for yn and qn by an-
alyzing the block diagram and then sketch the discrete sequence ŷn for n = 0,1...10.
What is the corresponding binary code sequence?
HINT: It might help to put everything in a table.
SOLUTION: This coder does not blindly look at the difference. It takes into account
the errors made by the coder by trying to predict xn−1 and transmit that difference; i.e.,
you have a negative feedback loop!

The equations we need to turn the crank are:

yn = xn −qn−1

where qn−1 is the input to the first adder and

qn = ŷn +qn−1

Assuming initial rest (qn = 0 for n < 0) we have:
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n xn yn ŷn qn bn

0 0 0 1 1 1
1 1/2 -1/2 -1 0 0
2 1 1 1 1 1
3 3/2 1/2 1 2 1
4 2 0 1 3 1
5 5/2 -1/2 -1 2 0
6 3 1 1 3 1
7 7/2 1/2 1 4 1
8 4 0 1 5 1
9 9/2 -1/2 -1 4 0

10 5 1 1 5 1
11 11/2 1/2 1 6 1
12 6 0 1 7 1
13 13/2 -1/2 -1 6 0
14 7 1 1 7 1
15 15/2 1/2 1 8 1
16 8 0 1 9 1

(c) (10 points) For system A, carefully sketch the resulting x̂n. You may assume that x̂0 = 0.
SOLUTION: Sketch here is simple. Only 1’s are transmitted and that corresponds to
always adding increments of +1. So x̂n = n.

(d) (10 points) Repeat the previous part for system B. Comment on any differences you
find between the outputs generated by the two methods. Which, if either, does a better
job? Why?
SOLUTION: In words, system B works out to, 3-up, 1-down, 3-up, 1-down for an
average of 2-up every four steps; i.e., a slope of 1/2 just like we want.
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Figure 1: System A for problem 3
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Figure 2: System B for problem 3
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