
THE STATE UNIVERSITY OF NEW JERSEY

RUTGERS
College of Engineering

Department of Electrical and Computer Engineering

332:322 Principles of Communications Systems Spring 2006
Quiz I

There are 3 questions. You have the class period to answer them. Show all work. Answers given without
work will receive no credit. GOOD LUCK!

1. (50 points) Linear Systems Warmup:

(a) (10 points) Write down the forward and reverse Fourier Transform which relates x(t)
and its Fourier Transform X( f ).
SOLUTION:

X( f ) =

Z ∞

−∞
x(t)e− j2π f tdt

x(t) =

Z ∞

−∞
X( f )e j2π f td f

(b) (20 points) Show that if x(t) has Fourier Transform X( f ), then the Fourier Transform
of dx

dt is j2π f X( f )

SOLUTION:

F
{

d
dt

x(t)

}

=
d
dt

Z ∞

−∞
X( f )e j2π f td f =

Z ∞

−∞
[ j2π f X( f )]e j2π f td f

Since the last expression is a reverse FT, the function in brackets is the FT of d
dt x(t).

(c) (20 points) The energy in a signal x(t) is

Ex =

Z ∞

−∞
|x(t)|2dt =

Z ∞

−∞
|X( f )|2d f

What is the energy in the signal x(t) = 2cos2πt
t − sin2πt

πt2 ?
HINT: Use your knowledge of Fourier Transforms and their properties. Also, work
smart, not hard.
SOLUTION: We notice that

x(t) =
d
dt

sin2πt
πt

and remember that via dualtiy

F
{

sin2πt
πt

}

= u( f +1)−u( f −1)

so
F {x(t)}= j2π f (u( f +1)−u( f −1))
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by the derivative property of the Fourier Transform. The magnitude squared is

(2π f )2(u( f +1)−u( f −1))

so we can use Parseval’s relation to obtain

Ex = 4π2
Z 1

−1
f 2d f =

8π2
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2. (50 points) Amplitude Modulation: Suppose the program material is a periodic square
wave

m(t) = ∑
k

p(t −2k)

where p(t) = u(t)−2u(t−1)+u(t −2).

(a) (10 points) Sketch the AM waveform r1(t) = m(t)cos2π fct on the interval [0,4] where
fc = 2
SOLUTION:

(b) (10 points) Sketch the large carrier AM waveform r2(t) = (1 + m(t))cos2π fct on the
interval [0,4] where fc = 2.
SOLUTION:

(c) (15 points) Now assume fc = 106 and sketch the output waveforms when r1(t) and
r2(t) are applied as inputs to ideal envelope detectors. Sketch the associated outputs.
SOLUTION: The point is that r1(t) has constant envelope and so the output of the
envelope detector is constant. r2(t) has an envelope which varies between zero and one
and so m(t) is recoverable by the envelope detector.

(d) (15 points) Suppose r1(t) is demodulated synchronously using cos(2π fct +φ) where φ
is a phase offset. What is the output? You must show your work and justify your result.
SOLUTION: The input to the low pass filter is x(t)cos2π fct cos(2π fct + φ) where
x(t) is either m(t) or 1+m(t). We rewrite this as

x(t)cosφcos2 2π fct − x(t)
sinφ

2 sin4π fct

We can expand cos2 to obtain

x(t)
cosφ

2
+ x(t)

cosφ
2

cos4π fct − x(t)
sinφ

2
sin4π fct

Spectrally, the first term is
0.5cosφX( f )

The second term is
0.25cosφ [X( f +2 fc)−X( f −2 fc)]

The third term is
0.5 j sinφ[X( f +2 fc)−X( f −2 fc)]

Only the term 0.5cosφX( f ) will survive the LPF so we’re left with 0.5cosφx(t) as the
time domain output.
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3. (50 points) Frequency/Phase Modulation:

(a) (15 points) Frequency modulation of a signal m(t) has the form

r(t) = cos
(

2π fct +β
Z t

0
m(τ)dτ

)

where β is a constant.
Assume fc = 108Hz, β = 100 and a single-sided bandwidth of fm = 104Hz for the
program material m(t). If r(t) is applied to an ideal envelop detector. What is the
resulting output? How might you answer change if fm = 106Hz?
SOLUTION: The envelope of the signal is constant and equal to 1, so the envelope
detector will output 1. However, if β is large enough, the bandwidth of the FM signal,
approximated by Carson’s rule as 2 fm(β + 1), will be wide and potentially have com-
ponents all the way to DC – where the envelope detector might pick them up because
the signal might have a slowly varying component.

(b) (15 points) We wish to design a superheterodyne receiver for radio stations whose
carriers are between 1GHz and 2GHz and adjacent channels are separated by 200KHz.
We can design tunable filters in the GHz range with Qs of only about 10. This means
that our filters will have a bandwith about 10% as wide as the carrier. So for a 1GHz
carrier, we can have a 100MHz wide tunable bandpass filter which cannot separate out
a single 200KHz channel in the passband.
What is the smallest value intermediate frequency (IF) can we use for our heterodyne
receiver?
SOLUTION: If the IF is fI , we want to make sure that the image frequency band
centered around fc − 2 fI is outside the band of our passband filter centered around
the carrier. So we must have the lower band edge of the filter fc −0.05 fc greater than
fc −2 fI +100KHz.

fc −0.05 fc > fc −2 fI +105

or fI > 0.025 fc + 5× 104. For fc in the GHz range, 0.025 fc dwarfs 105 so we can
ignore it. Thus we have fI > 0.025 fc and taking fc at its maximum value of 2GHz we
have fI > 50MHz.

NOTE: You’ll notice that this IF is high enough and the signal band narrow enough that
it still might be hard to pull out a 200KHz channel (need a filter Q of around 250). So,
we could take the heterodyned signal and apply yet another heterodyning operation to
it to make the IF low enough that we can build reasonably inexpensive filters to extract
the specific channel of interest.

(c) (20 points) Cora the communications engineer knows that single sideband AM can
be used to reduce the bandwidth of the radiated signal r(t) and thereby allow radio
channels to be more densely packed in frequency domain.
A phase modulated (PM) signal has the form

r(t) = cos(2π fct +βm(t))

Please help Cora devise, if possible, a comparable scheme for narrowband and wide-
band PM. Quantitatively argue your case. If it is possible, show how to do single
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sideband PM (modulation and demodulation). If not, show why not. You can assume
any ideal component you’d like.
SOLUTION: For narrowband PM (βm(t)� 1), the radiated signal is

r(t) = cos2π fct −βm(t)sin2π fct

Since the spectrum is

R( f ) =
1
2
(δ( f + fc)+δ( f − fc))−

jβ
2

(M( f + fc)−M( f − fc))

we could easily do vestigial filtering and remove the lower or upper signal sidebands.
Synchronous demodulation using sin2π fct would then recover the signal and ignore
the cos2π fct component.

For wideband PM (βm(t) � 1), the radiated signal is

r(t) = cos(2π fct +βm(t)) = cos(βm(t))cos2π fct − sin(βm(t))sin2π fct

The key issue in SSB is whether the spectrum to the right of the carrier frequency fc

contains the same information as the spectrum to the left of the carrier frequency. Well,
defining new “program material” functions

φ(t) = cos(βm(t))

and
ψ(t) = sin(βm(t))

we have
r(t) = φ(t)cos2π fct −ψ(t)sin2π fct

and spectrally we have

R( f ) =
1
2 [Φ( f + fc)+Φ( f − fc)]−

j
2 [Ψ( f + fc)−Ψ( f − fc)]

Since the baseband spectra Ψ( f ) and Φ( f ) must have conjugate symmetry (they are
the fourier transforms of real signals), the spectrum R( f ) will have conjugate symmetry
about the carrier frequency and once again, this will allow us do to SSB.

We can synchronously demodulate in sin and cos to obtain φ(t) and ψ(t) respectively.
And then, as one possible approach, we could internally reproduce the wideband r(t)
signal within the receiver and then use standard FM demodulation on it.

Of course, all this assumes β is not so large as to have the spectra Φ( f + fc) and
Φ( f − fc) overlap (ditto for Ψ()).

So Cora can indeed do SSB FM.
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