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There are four questions. You have the class period to answer them. Show all work. Answers given without
work will receive no credit. GOOD LUCK!

1. (50 points) Linear Systems Quickie Melange:

(a) (10 points) Provide Fourier SERIES expansions for cos(2πt), sin(2πt) and cos(2πt)+
cos(6πt).
SOLUTION: f (t) = ∑k ake j2π f0kt and

ak =

{

1/2 |k| = 1
0 o.w.

ak =







− j/2 k = 1
j/2 k = −1
0 o.w.

ak =







1/2 |k| = 1
1/2 |k| = 3
0 o.w.

(b) (10 points) Provide Fourier TRANSFORMS for cos(2πt), sin(2πt) and cos(2πt) +
cos(6πt).
SOLUTION:

1
2

(δ( f −1)+δ( f +1))

− j
2 (δ( f −1)−δ( f +1))

1
2 (δ( f −1)+δ( f +1))+

1
2 (δ( f −3)+δ( f +3))

(c) (10 points) Provide the Fourier TRANSFORM of cos2(2πt).
SOLUTION: Product in time domain is a convolution so

1
2δ( f )+

1
4 (δ( f −2)+δ( f +2))

Can also get the same result by using the identity cos2(x) = 1
2 (1+ cos(2x)) and taking

the FT directly.
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(d) (10 points) Find the energy in x(t) = sin2πt
πt .

SOLUTION: Time domain is useless here so move to frequency domain and use Par-
seval. X( f ) = u( f +1)−u( f −1). |X( f )|2 = X( f ). The area under |X( f )|2 is 2 so the
energy is 2.

(e) (10 points) x(t) = sin2πt
πt is applied to a filter with impulse response h(t) = sin2πt

πt . What
is the output y(t) = (x∗h)(t)?
SOLUTION: Given the previous part we’re simply multiplying the spectra X( f ) and
H( f ) which are identical and of height one. So the output spectrum is the same Y ( f ) =
X( f ) = H( f ) = u( f +1)−u( f −1). So the output is y(t) = x(t) = h(t)

2. (50 points) Amplitude Modulation: You are given two signals, m1(t) and m2(t) with spectra
M1( f ) and M2( f ) as shown in FIGURE 1. For all parts of this problem you can assume you

ff

M  (f) M  (f)
1

2

W−WW−W

Figure 1: Spectra for problem 2.

have a modulation/demodulation toolkit which contains as many multipliers as you’d like
and as many linear time invariant filters as you’d like (all ideal). You must also assume that
the signals m1(t) and m2(t) must be sent simultaneously.

(a) (15 points) You are given oscillators which output cos(2π fct) and cos(4π fct) where
fc �W . You may assume you have access to the same oscillators at the receiver, that
the phases of the oscillators at the receiver and transmitter match, and that there is no
propagation-induced phase shift of the transmitted carrier at the receiver.
Please draw carefully labeled block diagrams of an AM transmitter and an associated
AM receiver which provide (possibly scaled) copies of m1(t) and m2(t) at the receiver
output.
SOLUTION: Standard synchronous AM: Put m1(t) on the fc carrier and synchronously
demodulate it at the receiver. Put m2(t) on the 2 f c carrier. The spectra won’t overlap
since W � fc. See FIGURE 2

(b) (15 points) Now assume you are given oscillators which output cos(2π fct) and cos(4π fct)
where fc � W but that no copies of the oscillators exist at the receiver. For this part
you may assume you have access to ideal diodes.
Please draw carefully labeled block diagrams of an AM transmitter and an associated
AM receiver which provides (possibly scaled) copies of m1(t) and m2(t) at the receiver
output.
SOLUTION: Standard large carrier AM. Filter the signals in the passband and then
use envelope detectors to extract m1(t) and m2(t). See FIGURE 3
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Figure 2: Sketch for Question 2a

(c) (20 points) Now assume you are given oscillators which output cos(2π fct) and cos(2π( fc+
W )t) where fc �W , but otherwise assume the conditions of part 2a.
Please draw carefully labeled block diagrams of an AM transmitter and an associated
AM receiver which provides (possibly scaled) copies of m1(t) and m2(t) at the receiver
output.
SOLUTION: Two ways to go: could do single sideband using Hilbert or passband
filters, or could multiply carriers to obtain a second carrier at double the frequency
(and DC, but can filter that out before doing the modulation and demodulation). See
FIGURES 4, 5,6

3. (50 points) Cora’s Boxed PLL: Cora the Communications Engineer has been charged with
setting up a phase locked loop for her employer. She has taken the PCS course a number
of times and knows all about phase locked loops using sinusoids. However, her employer,
Boxomatic, is in the middle of its “Box the world!” campaign and tells Cora to use only
“boxy” signals. Thus, the input to the phase locked loop (see FIGURE 7) is c(2π fct) =
sgn(cos2π fct) and the voltage-controlled oscillator output is s(φ(t)) where s(t)= sgn(sint).
Please show that in the limit of large Γ as given in FIGURE 7 that φ(t) ≈ 2π fct. State all
assumptions and approximations.
SOLUTION: The key to this problem is figuring out the output of that low pass filter so we
can close the loop and derive some differential equations just like we did in class for the
“classical” PLL. So, c(2π fct) and s(2π fct) are periodic square waves with period T = 1/ fc

and offset by a quarter cycle. Sketching out c(2π fct) and s(2π fct) and sliding them past
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Figure 3: Sketch for Question 2b

Figure 4: Sketch for a possible transmitter (using SSB, lower side band) for Question 2c
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Figure 5: Sketch for the corresponding receier (using SSB lower side band) for Question 2c

Figure 6: Another way to do question 2c
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Figure 7: Phase locked loop diagram for problem 3.

each other reveals that the average A(τ) of c(2π fct)s(2π fc(t − τ)) is periodic and equal to

A(τ) =



























4(τ+ T
2 )

T
−T
2 ≤ t ≤ −T

4
−4τ

T
−T
4 ≤ t ≤ T

4
4(τ− T

2 )

T
T
4 ≤ t ≤ T

2

The part we’re going to end up being interested in is the central part which is linear with
negative slope about τ = 0.

So, the output of the multiplier is c(2π fct)s(φ(t)) which we rewrite as c(2π fct)s(2π fc(t −
ε(t))) where we’ll assume epsilon is small, just as in class. Using our result for A(τ), the
output of the filter is then −4ε(t)/T and we have

dφ(t)
dt

= 4Γε(t)

Substituting for φ(t) = 2π fc(t − ε(t)) yields

dφ(t)
dt

= −4Γ(φ(t)/(2π fc)− t)

which we rewrite as

2π fc
dφ(t)

dt
+4Γφ(t) = 4Γ(2π fct)

The homogeneous solution of this constant coefficient linear differential equation decays
since the root is −2Γ/(π fc) and if we make Γ large we have approximately

+4Γφ(t)≈ 4Γ(2π fct)

or
φ(t)≈ 2π fct

So this loop using these boxy signals works too! In fact, the VCO for a REAL phase locked
loop DOES output a square wave so you’ve now analyzed the case of the practical PLL!
Don’t you feel like a master of the universe?
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4. (50 points) Frequency/Phase Modulation:

(a) (25 points) Let r(t) = Acos(2π fct +βm(t)) where A is a constant. For |β| � 1 provide
an approximate analytic expression for the spectrum of r(t).
SOLUTION: Expand cosine:

r(t) = A(cos(2π fct)cos(βm(t))− sin(2π fct)sin(βm(t)))≈A(cos(2π fct)−βm(t)sin(2π fct))

The approximate spectrum is then

R( f ) ≈
A
2 (δ( f + fc)+δ( f − fc))+

−A j
2 (M( f − fc)−M( f + fc))

(b) (25 points) Let r(t) = Acos(2π fct + β f (t)) where A is a constant. PROVE that the
average power in the signal r(t) is A2/2 for periodic f (t) independent of the value of
β. You may assume that the period T of f (t) obeys fc � 1/T .
SOLUTION: The average power is the integral of r2(t) over a period. We have

r2(t) =
A2

2 [1+ cos(4π fct +2β f (t))]

Now, for the astute among you, you recognized that that’s as far as you could go given
the problem information. That is, suppose f (t) =−2π fct/β (or at least a suitable peri-
odic wrap-around of that function). However, if you in addition assume |2β f (t)| � 2π
it’s immediately apparent that you have a high speed sinusoid in cos(4π fct + 2β f (t))
which integrates to zero and you’re left with the constant A2/2.

Following through under the assumptions (or making additional assumptions) gave you
full credit. If you got courageous and tried time warping or some other such, you get a
smiley face (and full credit if it worked out).
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