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1. Consider a random proceXst) defined by
X(t) = sin(2rtfct)

in which the frequencyf. is a random variable uniformly distributed over the ran@aV].
Show thatX(t) is nonstationary. Hint: Examine specific sample functiohthe random
processX(t) for the frequencyf =W /2, W/4 andW say.

SOLUTION: An easy way to solve this problem is to find the mean of the rartocess
X(t)

E[X(t)] = Viv/owsin(znft) df— Viv[l COS(2TW1)]

Clearly E[X(t)] is a function of time and hence the procegs$)Xs not stationary.

2. LetX andY be statistically independent Gaussian-distributed remgariables each with
zero mean and unit variance. Define the Gaussian process

Z(t) = X cog2mt) +Y sin2mt)

(a) Determine the joint probability density function of tleendom variableZ(t1) andZ(ty)
obtained by observing(t) at timest; andt;, respectively.

SOLUTION: Since every weighted sum of the samples of the Gaussiarsprate
is Gaussian, 1), Z(t,) are jointly Gaussian random variables. Hence we need to find
mean, variance and correlation co-efficient to evaluatejtivet Gaussian PDF.

E[Z(t1)] = coq2mt1) E[X] + sin(2rt) E[Y]
Since BEX] = E[Y] =0, E[Z(t1)] = 0. Similarly, EZ(t2)] = 0.
CovZ(t)Z(tz)] = E[Z(t1)Z(t2)]
= E[Xcog2mt;)+ Y sin(2mt;)][X cog 2ty) + Y sin(2ty)]

— cog2rt;) cog 2ty E[X?] + [cog 2mt1 )sin(2rty) + sin(2rty ) cog 21t2) |E[XY]
+sin(2rty) sin(2mtp) E[Y?]

Noting that, EX?] = 1, E[Y?] = 1 and EXY] = E[X].E[Y] = 0 (since X and Y are
independent), we obtain,

CoVZ(t1)Z(tz)] = cog2m(t; —t2)]
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og( )= E[Z2(t1)] = 1. This result is obtained by putting + t, in CoV{Z(t1)Z(t2)].

t1

Similarly, og(  =E[Z%()] =1

)

Correlation coefficient is given by
0= COV[Z(tl)Z(tz)]
GZ(tl)G%(tz)

= cog2m(ty —t2)]

Hence the joint PDF
f2(ty).2(tp) (21: 22) = C.exd—Q(z1, 22)]

where,
o 1 B 1
- 2m/(1—co@(2m(ty—tp)))  2msin2m(ty —tp)]
Q(z1.22) = e [Zﬂz-tl o (2 — 2cod2m(ty — 1) ]2122 + 23]

(b) Isthe procesZ(t) stationary? Why?
SOLUTION: We find that EZ(t)] = 0 and covariance of &;) and Z(t) depends only
on the time differenca t- t,. The process &) is hence wide sense stationary. Since it
is Gaussian, it is also strict sense stationary.

3. The square wavk(t) of FIGURE 1 of constant amplitud&, period Ty, and delayty, repre-

)

Figure 1: Square wave fo«(t)

sents the sample function of a random procégs. The delay is random, described by the
probability density function

1 1 T
= Doty < a9

fota)=q To 2 — 972
0 otherwise



(a) Determine the probability density function of the randwariableX(tx) obtained by
observing the random proceXst) at timety.
SOLUTION: X(t) is a square wave, and it takes on the two valdes A with equal
probability. Hence the PDF can be given as

fi () = 5809 + 58(x— A

(b) Determine the mean and autocorrelation functioX @fy using ensemble-averaging
SOLUTION: Using our definition of ensemble average for the mean of ehakic

process, we find
E[X(t)]
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Autocorrelation: Let’s denote the square wave with randatag time p, period T
and amplitude A as &ap,(t —tp). Then, the autocorrelation can be written as,

Rx@) = E[ASO,(t—1tb).ASay(t—to+T1)]
= A2[ Sqro(t—tD) Sar, (t —tp +1)] fry (tp) ditp

= A7 Sqro(t—tD) Sap(t—to+ 1)) % dio
2
- galaf) <}
Since the square wave is periodic with periag) Rx(t) must also be periodic with
period .

(c) Determine the mean and autocorrelation functioX @f using time-averaging.
SOLUTION: On atime-averaging basis we note by inspection that the rigean

A
X(t) >= =
< X(t) > >
and time-autocorrelation is,
1 [To/2 A 1] To
<xt+txt>:—/ Xt+1X(t) = —=1-2=), 1/ < =+
CHOxO >= o [ X Ox0) =5 (1200 <

Again, the autocorrelation is periodic with period.T

(d) Establish whether or not(t) is stationary. In what sense is it ergodic?
SOLUTION: We note that the ensemble-averaging and time-averagitdjtyie same
set of results for the mean and autocorrelation functioriger&fore, Xt) is ergodic in
the mean and autocorrelation function. Since ergodicitylies wide-sense stationar-
ity, it follows that X(t) must be wide-sense stationary.

4. Consider two linear filters connected in cascade as in REQ. LetX(t) be a stationary
process with autocorrelation functi®x (t). The random process appearing at the first filter
output isV (t) and second filter output M¥(t).
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Figure 2: Cascade of linear filters

(a) Find the autocorrelation function ¥{t)
SOLUTION: The cascade connection of two filters is equivalent to a filtéln im-
pulse response

h(t) /Z ha(Wha(t — u) du

The autocorrelation function of(Y) is given by,
RY(T) = / / h(Tl)h(TZ)RX(T —T1+T2) drti dto

(b) Find the cross-correlation functidyy (1) of V(t) andY/(t).
SOLUTION: The cross correlation function of(¥) and Y(t) is,
Ryv(T) =EV({t+T1)Y(1)]

V(t) and Y(t) are related as follows,
Y(t) = / V(A)ha(t — ) dA

Therefore,
Ruv(T) = EN(t+1) [, V(A)ha(t—A) dA]
= [* hy(t —ANENV({t+T)V(A)] dA
= [T ha(t—ANRy/(t+T—A) dA

5. Arandom telegraph signl(t), characterized by the autocorrelation function
Rx (1) = exp(—2v|T|)

wherev is a constant, is applied to a low-pass RC filter of FIGURE 3tebeine the power
spectral density and autocorrelation function of the rangwocess at the filter output.

SOLUTION: The power spectral density of the random telegraph wavevesngas,
Sk(f) = J%Rx(T)exp(-j2mft) dt
— [O exp(2vt)exp(— j2mft) dt+ [ exp(—2vt) exp(— j2mft) dt
1 1

2(v—jmf) v+ Tif)
v

Ve f2
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Figure 3: RC Filter

The transfer function of the filter is

1

H(T) = 1+ j2nfRC

Therefore, PSD of the filter output is,

\

To find the autocorrelation function of the filter output, westfiexpand $(f) in partial
fractions as follows,

B Vv [ -1 n 1 ]

- 1-4R2CA2'(1/2RC)2+T2f2 2+ T2f2

Se(f)

Recognizing that,

1
”:T{m} = exp(—2v|t|)

(1/2RC)
(1/2RC)2 + 122
where IFT stands for Inverse Fourier Transform, we get®R=IFT {S,/(f)}

IFT{[ } =exp—|t|/RC)

_ v mexpevfr)) T
R =1l — 2RCexp(~ e

. A stationary Gaussian proces$t) has zero mean and power spectral dernSityf ). Deter-
mine the probability density function of a random variabbéaoned by observing the process
X(t) at some time.

SOLUTION: Let yx) be the mean and?(x) be the variance of the random variablg X
obtained by observing the random process at tign&@len,

Mx =0



We note that

The PDF of Gaussian random variablg i given by

1 —x?
X

7. A stationary Gaussian proceXst) with meanpy and variancm§< is passed through two
linear filters with impulse responség(t) andhy(t), yielding processe¥(t) andZ(t), as

shown in FIGURE 4
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Figure 4. Parallel systems.

(a) Determine the joint probability density function of thendom variable¥ (t;) and
Z(tp).
SOLUTION: Since Xt) is a Gaussian random process, the random variablésg)Y

and Zty) are jointly Gaussian. Hence to find the joint PDF, we need td fiariance
0d,, 05,, mean j,, liz, and correlation coefficierp — w
1742

Yity) = /ZX(tlT)hl(T) dt

Hy; = H1(0)u(x)
where H(0) = [®_hy(T) dT and |« is the mean of the stationary random procegs)X

Similarly, .
Z(ty) = /wX(tg— Wh(u) du

bz, = Hz2(0)u(x)
where H(0) = [ hz(u) du and 4 is the mean of the stationary random procegs)X



The covariance of ¥f1) and Z(ty) i

)is
t) — ) (Z(t2) — Hz,)]

CoVY(t1)Z(t2)] = E[(Y( |
= E[J% [Tu(X(ti—=T1) — i) (X(t2) — ) ha(T)h2(u) dt dU
= [T [SeE[(X(t1— 1) — ) (X(t2) — ux)]hl() 2(U) dt du
= J5% )5 Cx(tlftz—T-l-u)hl(T)hz(u) T

where & (1) is the autocovariance function of(¥.

of = E[(Y(t1) — )3
2 [2.Cx (T — u)hy(T)hg(u) dT du
03, = E[(Z(t2) 1z,

= [ [, Cx(T — u)hy(T)hy(u) dt du

Finally, the joint Gaussian PDF can be written as,

fyty),ztp) (Y, 2) = Kexp—Q(y, 2)

where,
k= 1
210y, 0z7,/1— p?
Qy.2) = (B2 gp X —Hay 22z (27 Mz

2(1- p2) Oy, Oy, 0z, 0z,

(b) What conditions are necessary and sufficient to ensat&'tlty) andZ(t,) are statisti-
cally independent?
SOLUTION: The random variables {f1) and Z(t) are uncorrelated if and only if
their covariance is zero. Sincelf and Z(t) are jointly Gaussian processes, it follows
that Y(t1) and Zt,) are statistically independent if Cp¥(t1)Z(t2)] = 0. Therefore the
necessary and sufficient condition foftY) and Z(t,) to be statistically independent is
that

/°° /°° Cx(t1—t2 — T+ u)hy(T)h2(u) dT du

8. A stationary Gaussian proceXst) with zero mean and power spectral dens®y(f) is
applied to a linear filter whose impulse respoh§g is shown in FIGURE 5. A sampMé is

ht)
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Figure 5:h(t) for problem 8

taken of the random process at the filter output at fime
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(a) Determine the mean and variance of Y
SOLUTION: The filter output is

Yt) = [“,h(T)X(t—T1)dt
= 1Jo X(T-1)d

Put T— 1 = u. Then the sample value ofty att = T equals

1 /7 q
=7 /o X(u) du
The mean of Y is therefore

E[Y] = E[7 fo X(u) du
Sfo E[X(u)] du

Variance of Y
o} = E[YZ-E[Y]?
= Ry(0)
S Se(f) d
= f°°ooS><(f)|H( )7 df
[, h(t) exp(—j2mft) dt
1 1) exp(—j2mft) dt
= sind fT)exp(—jmrfT)
Therefore,

02 = /w Sc(F)sin@(fT) d

(b) What is the probability density function ¥f?
SOLUTION: Since the filter output is Gaussian, it follows that Y is alsmu€sian.

Hence the PDF of Y is
(y) = ———exp(=)
v(y) = 5
J2mod 20y




