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1. Discovered Angle Modulation A signals(t) is measured and found to be described by

s(t) = A cos(2πfat + α sin 2πfbt)

(a) We’re later told thats(t) is an angle modulated signal with sensitivitykp. Using the
standard angle modulation signal format found in your text,what is the information
signalm(t)?

SOLUTION: A phase-modulated signals(t) is a form of angle modulation in where
the angleθi(t) is varied linearly with the message, thus this is described in time domain
by

s(t) = A cos(2πfct + kpm(t))

where
θ(t) = 2πfct + kpm(t)

Using the above equations, we see that

θ(t) = 2πfat + α sin 2πfbt

Hence,
fc = fa

kp = α

m(t) = sin(2πfbt)

with fm = fb

(b) Now, imagine that you’re told “WHOOPS! I meant FREQUENCYmodulation. with
frequency sensitivitykf .” Again using the standard signal format described in your
text, please provide the information signalm(t) and the instantaneous frequencyfi(t).

SOLUTION: A frequency-modulated signals(t) is a form of angle modulation in
which the instantenous frequencyfi(t) is varied linearly with the message signalm(t),
and it is given by

s(t) = A cos

(

2πfct + 2πkf

∫ t

0

m(τ)dτ

)

where the instantenous frequency is defined as

fi(t) = fc + kfm(t) =
1

2π

dθi(t)

dt
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Hence, given our signals(t) we find that

θi(t) = 2πfat + α sin(2πfbt)

and
dθi(t)

dt
= 2πfa + α cos(2πfbt)(2πfb)

Therefore,

fi(t) =
1

2π

dθi(t)

dt
= fa + αfb cos(2πfbt)

fc = fa

kf = αfb

m(t) = cos(2πfbt)

2. Two Tone Madness: Consider a message signal with two tones at frequenciesfa andfb

respectively, defined as
m(t) = Am cos(2πfat) cos(2πfbt)

(a) Find the corresponding phase modulated and frequency modulated signals.

SOLUTION: For a PM signal, we have

s(t) = A cos(2πfct + kpm(t))
= A cos(2πfct + kpAm cos(2πfat) cos(2πfbt))

= A cos
(

2πfct + kpAm

2
[cos(2π(fa − fb)t) + cos(2π(fa + fb)t)]

)

For a FM signal, we have

s(t) = A cos
(

2πfct + 2πkf

∫ t

0
m(τ)dτ

)

= A cos
(

2πfct + πkfAm

∫ t

0
[cos(2π(fa − fb)τ) + cos(2π(fa + fb)τ)]dτ

)

= A cos
(

2πfct +
kfAm

2

[

sin(2π(fa−fb)t)
(fa−fb)

+ sin(2π(fa+fb)t)
(fa+fb)

])

(b) Find the narrowband FM (i.e NBFM) signal using the FM modulated signal obtained
in the previous part.

SOLUTION: Given the FM signal obtained in Part (a), we can obtain a narrowband
FM signal by using a modulation indexβ for which it is very small compared to one
radian. Thus, the FM signal is

s(t) = A cos

(

2πfct + β

[

sin(2π(fa − fb)t)

(fa − fb)
+

sin(2π(fa + fb)t)

(fa + fb)

])

where

β =
Amkf

2

We use trigonometric expansions to obtain

s(t) = A cos (2πfct)) cos

(

β

[

sin(2π(fa − fb)t)

(fa − fb)
+

sin(2π(fa + fb)t)

(fa + fb)

])

−A sin (2πfct)) sin

(

β

[

sin
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so the NBFM signal is approximately

s(t) = A cos(2πfct) + Aβ sin(2πfct)

[

sin(2π(fa − fb)t)

(fa − fb)
+

sin(2π(fa + fb)t)

(fa + fb)

]

since for small|x| ≪ 1 we havecos(x) ≈ 1 andsin(x) ≈ x

3. Linear? Nonlinear? Let m1(t) andm2(t) be two message signals, and lets1(t) ands2(t)
be the corresponding modulated signals.

(a) Carefully show that if the modulation is DSB-SC, SSB, or VSB, then

m(t) = m1(t) + m2(t)

will produce a modulated signal

s(t) = s1(t) + s2(t)

SOLUTION: For m1(t) the modulated signal using DSB-SC is

s1(t) = m1(t) cos(2πfct)

Similarly, form2(t) using same modulation technique, we get

s2(t) = m2(t) cos(2πfct)

and form(t), we have

s(t) = m(t) cos(2πfct) = [m1(t) + m2(t)] cos(2πfct)

Hence,
s(t) = s1(t) + s2(t)

= [m1(t) + m2(t)] cos(2πfct)

Therefore, DSB-SC modulation is a linear modulation. SinceSSB and VSB are simply
linear operations (filtering) on this linear system, they are linear as well.

(b) Show that if the modulation is PM or FM, then

m(t) = m1(t) + m2(t)

will not in general produce
s(t) = s1(t) + s2(t)

SOLUTION: For PM, we have

s1(t) = A cos(2πfct + kpm1(t))

and
s2(t) = A cos(2πfct + kpm2(t))

Thus,

s(t) = A cos(2πfct + kpm(t)) = A cos(2πfct + kp[m1(t) + m2(t)])
6= s1(t) + s2(t)

So, we notice that the phase is linear in the program materialmi(t) but the overall
signal is not. For FM, integration is a linear operation we use the results from PM
to see that the instantaneous frequency and phase are linearbut the actual modulated
signal is not.
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4. Lecture Redux Suppose we have a modulated signal

s(t) = A cos(2πfct + βsin(2πfmt))

with β << 1 (i.e., narrowband FM/PM).

(a) Find the spectrum of this narrowband FM/PM signal.

SOLUTION: Using the hint given in question 2 , we can approximate the NBFM signal
to be

s(t) = A cos(2πfct) + Aβ sin(2πfmt) sin(2πfct)

= A cos(2πfct) + Aβ

2
(cos(2π(fc − fm)t) − cos(2π(fc + fm)t))

Hence, the spectrum of s(t) is

S(f) =
A

2
[δ(f − fc) + δ(f + fc)] +

Aβ

4
[δ(f − (fc − fm)) − δ(f − (fc + fm))]

(b) Compare your previous result to the spectrum of an AM (suppressed carrier) signal

s(t) = A sin(2πfmt) cos(2πfct)

Cite similarities and differences.

SOLUTION:

s(t) =
A

2
(sin(2π(−fc + fm)t) + sin(2π(fc + fm)t))

and

S(f) =
A

4j
[δ(f − (−fc + fm)) + δ(f − (fc + fm)) − 2δ(f + (fc + fm))]

The AM signal is missing the large carrier present in the NBFMsignal and the infor-
mation is carried in phase with the carrier. IN the NBFM signal the information is
π/2 out of phase with the carrier. Thus, the envelope of the NBFM signal is more or
less constant while (as its name implies) the AM signal varies in amplitude in direct
proportion to the program material.

5. Phase Locked Loops: Consider a phase locked loop whose sole purpose is to lock on to
the incoming sinusoidcos(2πfct) and producesin(2πfct) at the output of the VCO (voltage
controlled oscillator). The incoming sinusoid is multiplied by the output of the VCO and
the result is sent through a low pass filter whose output is multiplied by −K (K > 0 a
constant). The output of the multiplier, call itφ̇(t), is in turn sent to the input of the VCO
which producessin φ(t).

(a) Sketch a system diagram of the PLL and show it will producethe desired result if the
gainK is large enough. You may assume thatφ(t) ≈ 2πfct and then make appropriate
approximations.

SOLUTION: The inputs to the multiplier arecos(2πfct) and sin φ(t). We rewrite
φ(t) = 2πfct+e(t) wheree(t) is assumed small. At the output of the multiplier we then
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have (after expanding the argument of the sinecos2(2πfct) sin e(t)+cos(2πfct) sin(2πfct)
and the second term is lost when it passes through the low passfilter since it’s HIGH
frequency (sin(4πfct)/2 to be exact). The first term has a D.C. component of1/2 (be-
cause of the cosine squared) and what pops out of the filter is≈ e(t)/2 sincesin x ≈ x
for smallx.

We multiply this by−K/2 and then have

φ̇(t) = −Ke(t)/2 = −K(φ(t) − 2πfct)/2

which we rewrite as
φ̇(t) + (K/2)φ(t) = Kπfct

This is a nice happy and stable first order differential equation whose homogeneous
portion settles ase−

K
2

t which forK large is FAST FAST FAST! So given the homoge-
neous solution dies out, we’re left with the particular forK large of

φ(t) ≈ 2πfct

which is exactly what we wanted in the first place! If you made it to here, you solved
the problem and were done. The following is extra.

Now, above we assumede(t) was small, but what if it’s not small?!?! Specifically, what
if e(t) = nπ + ∆(t) where∆(t) IS small butn can be ANY INTEGER!!!. All the same
approximations hold, except that what pops out of the LPF is±∆(t), note(t). We then
have

φ̇(t) = ±K∆(t)/2 = ±K(φ(t) − 2πfct − n2π)/2

and we have lock again ifn is even (just with anπ phase offset). However, ifn is odd,
then what pops out of the sine is MINUS∆ and that leads to INSTABILITY because
the homogeneous equation will have a POSITIVE exponent. Butthat can’t last long
because the instability will makeφ(t) grow so that we move up to the next value of
n. So, anyn odd gets kicked to the nearestn even solution. So the PLL is all about
STABILITY!

This system LOCKS ON to the input sinusoid BECAUSE it’s a stable system (stable dif-
ferential equation). The negative feedback stabilizes things just like negative feedback
stabilizes op-amp circuits. Negative feedback is NEAT!

(b) Given the same inputcos(2πfct) is it possible for the phase locked loop to “lock on” to
frequencies other thanfc. If so, which ones? If not, why not?

HINT: Think about the bandwidth of the low pass filter – which we never actually
specified in the previous part.

SOLUTION: Let’s start with the previous part, but not assumee(t) is NOT small. The
input to the low pass filter is

cos2(2πfct) sin e(t) + cos(2πfct) sin(2πfct)

Certainly we’re gonna lose the really high frequency secondterm and the cosine squared
term averages to1/2 so

φ̇(t) =
1

2
sin e(t)

Now, the question “becomes how low is low on the low pass filter?”
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Let’s do some thought experiments. Suppose the PLL (that’s technicalese for phase
locked loop) frequency starts out too low (f0 ≪ fc). Thene(t) is large andφ̇ = 0
becausesin e(t) never makes it out of the LPF.φ̇ = 0 implies zero frequency so the
VCO output goes even lower until it’s a D.C. level. No lock!

We can make the same argument if the VCO starts too high in frequency too. So,
there’s a RANGE of frequencies which can be locked in. Let’s say the low pass filter
has bandwidthW Hz (single sided). Then we know that|de(t)

dt
| < 2πW to achieve lock.

This means that the initial VCO frequencyf0 has to|f0 − fc| < W Otherwise the VCO
outputs whatever it’s lowest frequency is and thinks it’s doing a good job!

If you’re REALLY interested in PLLs, our local expert is DaveDaut. He can tell you
as much as (or more than) you’ll ever want to know about PLLs since he was heavy
into the topic when it was hot quite some time ago – and still teaches the rudiments in
his senior level course on RF engineering. The down side is that PLLs were studied
to death quite a long time ago and are essentially a dead research topic. But so are
vacuum tube audio amplifiers and they’re still fun to learn about and use.
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