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1. When Is a Carrier a Good Carrier?: Given an information signalm(t) you want to gen-
erate

r(t) = Am(t) cos(2πfct) (1)

However, life (your professor) is unkind and you’re only allowed to usecos3(2πfct) as your
carrier signal. That is, the first stage of your transmitter block diagram withm(t) as the input
is going to be a multiplication bycos3(2πfct) (instead of the usual sanecos(2πfct)).

(a) Assume you can build any linear time invariant (LTI) filter you’d like. Can you fil-
ter the output of the multiplier to obtain the desired signal? If so, what is the filter
characteristic?

SOLUTION: In order to obtainr(t) = Acm(t) cos(2πfct),we need to design a filter
that give us the desired signal, therfore using the math identities such as:

cos2(x) =
1

2
(1 + cos(2x))

cos(α) cos(β) =
1

2
(cos(α + β) + cos(α − β))

cos3(x) = cos(x) cos2(x) = cos(x)(
1

2
+

1

2
cos(2x)) =

3

4
cos(x) +

1

4
cos(3x)

we can design a LPF filter so that we get rid off of the third harmonic components e.g.
1

4
cos(3(2πfc)) thus that we are only left with3

4
cos(2πfct).

(b) Supposecos2(2πfct) is the carrier. Repeat the previous part.

SOLUTION: cos2(2πfct) does not have a component at frequencyfc. So, nope!

(c) Suppose we generalize the carrier to becosn(2πfct) for n > 2. When can you generate
the desiredr(t) using LTI filters.

SOLUTION: Use the odd harmonics of the signal and we’re always guaranteed a
component at frequencyfc.

2. Simple Envelope Detection:Consider the following AM signal

s(t) = Ac[1 + λ cos(2πfmt)]cos(2πfct) (2)

The modulation factor isλ = 1 andfc ≫ fm. The AM signal is applied to an ideal envelope
detector producing the outputv(t).
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(a) Why did we stipulatefc ≫ fm?

SOLUTION: An envelope detector works by allowing the incoming signal to quickly
drag the envelope detector output higher, but then resisting negative swings via the
diode (the output capacitor has to discharge). This means that an envelope detector
tracks the peaks of the incoming signal and when the carrier frequency is high, the rec-
tified signal looks like a “picket fence” representation of the low frequency information
signal. If the carrier frequency is on the order of the frequencies in the information
signal, there are no “peaks” to detect.

(b) Findv(t) andV (f).

SOLUTION: Just for reference we compute

S(f) =
1

4
Ac







2 [δ(f + fc) + δ(f − fc)] + λ [δ(f + fc + fm) + δ(f + fc − fm)]
+

λ [δ(f − fc + fm) + δ(f − fc − fm)]







Now to the main show. A simple envelope detector chops off thenegative half-cycles
of the carrier. For cosine modulation and the information signal not going negative,
this is equivalent to multiplying the signals(t) by an even square wave with the same
period as the carrier. If we call this signalz(t) we have analytically

z(t) =

∞
∑

k=−∞

p(t −
k

fc

)

where

p(t) =

[

u(t +
1

4fc

) − u(t −
1

4fc

)

]

So, we then have
v(t) = s(t)z(t)

and
V (f) = (S ∗ Z)(f)

Sincez(t) is periodic, we calculate its FT by first representing it as a Fourier Series

zn = fc

∫ 1

4fc

−
1

4fc

e−j2πfcntdt =
sin π

2
n

πn

so that

Z(f) =
∞
∑

n=−∞

znδ(f − nfc)

We note that sincez(t) is even, the coefficientszn are real.

Doing the convolution graphically (or in our heads since it’s just impulses) we get
copies ofS(f) at multiples offc so

V (f) =
∞
∑

n=−∞

znS(f − nfc)
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which leaves us with a the baseband signal

1

2
Acz1 {2δ(f) + λ [δ(f + fm) + δ(f − fm)]}

and a bunch of upper sidebands. The LPF filters out these uppersidebands and we’re
left with only the baseband signal which is simply our sinusoid with a DC offset.

(c) How does your answer change (qualitatively) ifλ > 1?

SOLUTION: The program material now goes negative and the rectifier makes it pos-
itive. There’s no difference inS(f), but now we can’t just multiply byz(t) to get the
post-rectified signal.

3. More Modulation Hijinks: A switching modulator (refer to figure P2.3 page 167 in your
text) uses a carrier wavec(t) to generate a modulated signal. The diode acts like an ideal
switch described by:

v2(t) =

{

v1(t) if c(t) > 0
0 otherwise

(a) Determinev2(t) andV2(f)

SOLUTION: v2(t) represents the change in voltages for the carrier signal. i.e if the
carrier amplitude voltage is greater than the modulating signal voltagem(t), v1(t) is a
nonzero voltage and thefore the diode conducts. However, ifthe carrier voltage is less
than the modulating signalm(t), the diode switches off andv2(t) = 0. We first find

v1(t) = Ac cos(2πfct) + m(t)

simply by kirchoff ’s voltage law. At this point you’re saying “Hey! That’s not a modu-
lated wave!!!! You’ve just offset the sinusoid bym(t)!” but wait just a second.

Once we rectify, we have what looks like the output (before filtering) of a rectifier for
an envelope detector. That is, we lopped off the negative portion ofv1(t) which made it
not look like a real (symmetric) envelope.

Approximately (assuming the drop across the diode is small andm(t) varies SLOWLY
compared tocos 2πfct we have

v2(t) ≃ (Ac cos(2πfct) + m(t))gTo
(t)

where

gT0
(t) =

1

2
+

2

π

∞
∑

n=1

(−1)n−1

2n − 1
cos(2πfct(2n − 1))

Though this looks strange, it’s just the formal way of writing down the positive caps of
the cosine carrier in a Fourier series. This will be useful later when we want to identify
components at the carrier frequency. You should verify thatit’s correct by calculating
the fourier series of[cos 2πfct]

+ where the[x]+ notation means zero unlessx ≥ 0.

The fourier transform ofv2(t) is

V2(f) =
Ac

2
(δ(f − fc) + δ(f + fc)) ∗ GTo

(f) + M(f) ∗ GTo
(f)

Note: (∗) represents convolution
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(b) Find the AM wave component inv2(t) as follows
SOLUTION: What you’re looking for is something of the form(1+kam(t)) cos 2πfct.
So now you have to look more carefully at the fourier series representation.

v2(t) = (Ac cos(2πfct) + m(t))

(

1

2
+

2

π

∞
∑

n=1

(−1)n−1

2n − 1
cos(2πfct(2n − 1))

)

The second term in the sum is where the action is – the carrier is then = 1 term.
Terms forn > 1 have frequencies greater thanfc. And the constantm(t) term is
low frequency so we can throw it away (filter it out) just like we filter out the higher
frequencies wheren > 1. So we can write

s(t) = Ac cos(2πfct) + m(t)
2

π
cos 2πfct

Regrouping we have

s(t) =

(

1 +
2

πAc

m(t)

)

cos(2πfct)

which is the standard form for an AM signal.

(c) Identify the unwanted components inv2(t) at the output of the demodulator
SOLUTION: We essentially did this above. You just filter them out.

(d) A modulation signalm(t) and sent it through a vestigial sideband modulator that out-
putss(t). FindS(f). Design a proper demodulator for this modulated output.
SOLUTION: There are several ways to do this. I prefer to do it simply given the
wording of the problem. 1) first you modulate the signal in theregular way (multiply
by cosine) 2) Then you apply a filter with that special symmetric edge property. Call it
H(f). You’re done.
Now, you can also get fancier and do something akin to the Hilbert transform and
modulatem(t) in cosine and an associated̃m(t) in sine and add appropriately. But
frankly, if you’re going to go to all that trouble, you might as well just USE the Hilbert
transform in the first place!

Nonetheless, a more carefully worded version of this problem might not be a bad quiz
I problem.

4. Bandwidth Efficiency: A normalized transmission bandwidth is defined by

η =
BT

W
(3)

whereBT is the transmission bandwidth of the modulated signal, andW is the message
bandwidth. Compute the values ofη for modulation schemes of AM, DSB-SC and SSB.

SOLUTION: The bandwidth used by suppressed carrier AM (and large carrier AM for
that matter) is2W whereW is the double sided bandwidth of the message signal. For single
sideband, you use half that. For this definition of efficiency(which is pretty hokey – upside
down, really) you then have efficiencies ofη = 2 (SC and large carrier) andη = 1 for SSB.

NOW, one can also talk about the POWER efficiency, but that’s asignal to noise ratio issue
which well deal with in the week before the exam (next week that is! WOW how time flies!).

4



5. Cora and Carrier Squirrel:

Cora the famous Rutgers Communications Engineer has been hired by Arboretums ’R Us to
build an AM communications system for their small forest. Being somewhat eccentric, they
have designed a signature component,the squirrel carrier signal generator, which consists
of a tiny fast squirrel sitting on a heated switch. When the switch gets hot, the squirrel jumps
which breaks the switch connection and shuts off the heater.When the squirrel lands, it turns
the heater back on and the process begins again. If a given squirrel’s evil twin is put in an
identical box, it out of sheer meaness gets out of phase (it jumps up just before the other
squirrel lands on its switch and comes down just before the other squirrel jumps up).

A complete up down cycle for each squirrel lastsT = 1/fc seconds. Since the switch is
either closed or open, the carrier generator output is essentially binary and takes on values
±1. The rest of the system components are more standard (electronic multipliers, LTI filters,
etc.).

For mathematical convenience, we will definec(x) = sgn(cos(x)) ands(x) = sgn(sin(x))
with sgn(0) = 1.

(a) Carefully sketchc(2πfct) ands(2πfct) as a function oft for fc = 10.

SOLUTION: c() just a symmetric zero mean square wave, centered about the origin
with frequency10Hz. s() is offset to the right by a half cycle so it’s an odd function.

(b) Suppose Cora has program materialm(t) and uses it to modulatec(2πfct) wherefc =
10. Carefully sketch the signalr(t) = m(t)c(2πfct) for somem(t) of your choosing
which varies slowly as compared toc(2πfct).

SOLUTION: You’ve got a sqaure wave skeleton whose extrema outlinem(t).

(c) Now suppose we formr(t) = m(t)c(2πfct) Assumec(2πfct) is available at the re-
ceiver (a synchronous squirrel system!). Show EXACTLY howm(t) can be recovered
at the receiver. Or if it cannot, show why not. As compared to modulation/demodulation
using sinusoids, explain why a low pass filter is necessary (or unnecessary) to recover
m(t).

SOLUTION: We note thatc(2πfct)c(2πfct) = 1. Sor(t)c(2πfct) = m(t) and unlike
regular AM, you get your original signal back simply by multiplying with the carrier.
No LPF is necessary.

(d) Of course, any good arboretum needs at least two independent channels – one for the
trees and the other for the human visitors – but the squirrel modulator only comes
in one frequency. So, suppose Cora gets normal – evil twin squirrel pairs and forms
r(t) = m1(t)c(2πfct) + m2(t)s(2πfct) where bothm1(t) andm2(t) vary slowly as
compared toc(2πfct) ands(2πfct). Assuming bothc(2πfct) ands(2πfct) are available
at the receiver (evil synchronous squirrels too!), show EXACTLY howm1(t) andm2(t)
can be recovered. Or if they cannot, show why not.

Explain why a low pass filter is necessary (or unnecessary) torecover themi(t).

SOLUTION: You form two rails and obtainm1(t) + m2(t)s(2πfct)c(2πfct) after
multiplication byc(2πfct) andm2(t) + m1(t)s(2πfct)c(2πfct) after multiplication by
s(2πfct). In each case we have a baseband signalmi(t) and then an additive term
which has only high frequency components – note thats()c() is a square wave with
DOUBLE the frequency of eithers() or c(). So by low pass filtering, we obtain the
respectivemi(t).
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(e) Supposer(t) = (1+m(t))c(2πfct) where|m(t)| ≤ 1. To recoverm(t) Cora full wave
rectifiesr(t) to obtainz(t) = |r(t)| and then applies an operatorT [] to z(t). What
operatorT [] should Cora use to recoverm(t)? Is this operator linear?

SOLUTION: We have1+m(t) ≥ 0 and|c(x)| = 1 so|(1+m(t))c(2πfct)| = 1+m(t).
To recoverm(t) we just subtract1. This operator is nonlinear sinceT [x] = x − 1 but
T [2x] = 2x − 1 (and not2x − 2).
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