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Final Exam

There are FIVE questions. You have the three hours to an$wer.tRead the WHOLE EXAM before doing
the problems. Show all work. Answers given without workmedkive no credit. GOOD LUCK!

1. (50 points)Continuous Modulation: A signalr(t) = b(t) cos2008t is received where

bt)= Y bep(t—kT)

k=—0o0

with p(t) = Si%”‘ and theby having arbitrary real values.
(a) (25 points)Canb(t) be recovered exactly using a synchronous AM demodulator? If

so, why and how? If not, why not?
SOLUTION: p(t) is a sinc pulse. It's Fourier transform has constant amplgu
betweent1Hz. k(t) is a linear superposition of shifted versions @f yoand hence has
a spectrum which exists only forf(—1, 1) as well. Thus, the signal(t) is a bandpass
signal, centered around the carrieg £ 100(Hz. Synchronous AM demodulation will
therefore exactly recover the band-limited informatiorvefrm kt).

(b) (25 points)Suppose now thap(t) = u(t) —u(t —1). Canb(t) be recovered exactly
using a synchronous AM demodulator? If so, why and how? Ifwai not?
SOLUTION: P(f) is a sinc spectrum which exists for all frequencies. So, flee-s
trum of r(t) is sinc convolved with(3( f + 1000 + &(f — 1000) and synchronous
demodulation will produce a copy of the information speeti®( f ), but there will also
be copies at Pf —2000 and R f +2000 whose tails will overlap with Pf). So Kt)
cannot be exactly recovered using synchronous AM demaainlat

2. (50 points)Cora, Marty and DaMar: Cora the communications engineer has a dog named
Data. As you know by now, Cora and Marty are not exactly frign®o it was with great
dismay that Cora watched Data gave birth to DaMar, the sgjtilog.

DaMar is much more squirrel than dog and roams the nearbgtféweaging for nuts just
like Marty. Cora, seeking revenge, wants to drive Marty fritra forest and she’s decided
to destroy Marty’s nut caches. However, she has an auntlyspof for DaMar and does not
want to destroy his caches.

Now, DaMar is a rather large squirrel and collects more notaverage than Marty does. In
fact the number of nutl in a given cache is

n
fn(n|DaMar) = (}\r?') e o
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for DaMar and

n
fn(n|Marty) = %e‘m

for Marty whereAp = aAy anda > 1

When Cora comes across a nut cache, she counts the numbés Nfamod makes a decision
about whether to destroy the cache. Your job it to help hersgean appropriate decision

rule. You may assume that Cora comes across a cache beldodwagty or one belonging
to DaMar with equal probability.

(@) (20 points)Based om the number of nuts in the cache, please provide a decisien rul
which minimizes the probability that Cora makes a mistakemi&take is defined as
when Cora destroys a cache belonging to DaMar or leaves & t@btbnging to Marty.

SOLUTION: This is a minimum probability of error problem so we form tikelihood

ratio: g
A estroy
Bl g (1 ne(a—l))\M >
()\D) e*)\D a <
save
Taking the log of both sides yields
save 1
>
n = Iog(a)(a DAwm
destroy

(Notice that the inquality changes when you multply throtghremove the minus
signs.)

(b) (20 points)Fora = € andAy = 1, please provide an analytic expression for the prob-
ability that Cora makes a mistake using your decision riN©OTE: €® ~ 7.39.)
What happens to this probabilitydf = €*. (NOTE:e* ~ 54.6.)
SOLUTION: We have fon = €

save 1
n 2 é(e2 ~1)=32
destroy

and fora = &

save
>

1
n 2 21(e2— 1) =134
destroy

Cora makes an error when she destroys one of DaMar’s cachésvaen she does not
destroy one of Martin’s. So

n* ©

1n
Pe = 5 %fN n|DaMar) + Zr n(n|Marty)

where i is the threshold value to the right side of the inequality.
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(c) (10 points)Suppose Cora is only worried about the probability that stetrdys one
of DaMar’s caches and does not worry at all about erronedealying one of Marty’s.
What is her optimal policy in that case? What is the probgtsihe mistakenly destroys
one of DaMar’s caches?

SOLUTION: If she’s not worried about not destroying one of Marty’s castbut
never wants to destroy one of DaMar’s, Cora should simplydestroy any caches.
Her probability of destroying one of DaMar’s caches is ideally zero.

3. (50 points)Digital Modulation:
An information signab(t) has the form

()= ¥ bplt—KT)

k=—o0

wherep(t) = u(t) —u(t—T) (i.e., p(t) is a unit-height pulse o0, T]), theby € {0,1} are
equiprobable random information digits amd> 0. Assume that the receiver knows the
structure of the signdi(t) but not the specifi¢by}.

(@) (15 points)If the received signal(t) = b(t)coszT—“t, can you devise a receiver which
recoversh(t) EXACTLY if you have a copy of co%ﬂt available at the receiver. If so,
how? If not, why not?

HINT: Try sketching an example oft).
SOLUTION: Incredibly easy: the local copy obszT”t gives you a clock so you know

the symbol intervals. And the symbols 8rand1. So, when the signal is non-zero in
an interval, lp = 1. If it's zero, i = 0 and this allows you to reconstructt).

(b) (15 points)
Now suppose you only have some sinusoic(t%ﬁisvL @) available at the receiver where

@is some phase offset. Can you still always recterexactly fromr (t) = b(t) coszT—"t?
If so, how? If not, why not?

SOLUTION: Just as incredibly easy: you don't have a time reference ybutstill
can see when(t) is identically zero and when it's not. Thus, you still imnaeely
know what fft) is.

(c) (20 points)Now suppose zero mean white Gaussian noi{sgwith spectral heighiNg
corrupts the received signal so thiét) = b(t) coszT”t +n(t). Please carefully sketch
and label a receiver which recovers tfig} with minimum probability of error. You
must also include the rule used for the “decision box”. Stditassumptions.

SOLUTION: This is standard digital modulation. The signal

21
S(t)=(u(t) —u(t—T)) cos?t
and each intervalkT, (k+ 1)T] is a symbol interval. So we simply use a correlator
receiver on each interval usindts as the correlation signal. You could also use a
matched filter since it's exactly equivalent to the corretafs we’ve analyzed in class,
the output of the correlator will be a Gaussian random val&lbit's mean will be zero



given b= 0and T/2 given b= 1. In both cases its variance is the same. So, if X is the
output of the correlator, the decision rule will be

b=1 T
>

X Z 7
b=0

4. (50 points)Quantization: You are given the 2-bit quantizer shown in FIGURE 1 and are
told that it's an optimal quantizer for a signal which hasfarm probability density between
zero and one. Is the quantizer optimal?

(a) (10 points)Why is Q(x) called a 2-bit quantizer?
SOLUTION: Because it has 4 levels a = 4 when b= 2, or “two bits”.

(b) (40 points)ls the quantizer optimal? If so, why? If not why not — and witattthe
optimal quantizer?
SOLUTION: Loyd-Max: % = (0k+ Ok+1)/2. For k=1 we have0.25 # (0.25+
0.5)/2 so we've got a problem — this quantizer is not optimal! Howefreve just shift
everything down b9.125(i.e., define a new quantizer @) = Q(x) — 0.125) we have

k=1 025=(0.125+0.375)/2
k=2 05=(0.375+0.625)/2
k=3 0.75=(0.625+0.875)/2

and then we have to check the other part of Loyd-Maye=dE [X|x € bin K

k=1 0125=E[X|X € (0,0.25)]

k=2 0375=E[X|X € (0.25,05)]
k=3 0625=E[X|X € (0.5,0.75)]
k=4 0875=E[X|X € (0.75,1.0)]

and all is now well.
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Figure 1: Quantizer for Problem 4

5. (50 points)Signal Space: You are given two signals on the interv@, 1): @ (t) = u(t) —
u(t—1) andgy(t) = u(t) — 2u(t—0.5) + u(t — 1).

(a) (20 points)Show that thep (t) are orthonormal.

SOLUTION: @ (t)@(t) =@(t) andfolcpg(t)dt = 0so0 signals are orthogonadf(t) =
u(t) —u(t—1) and fol 1dt = 1 so signals are also normal.

(b) (30 points)Provide an analytic expression for each of the signal pailefsicted in
FIGURE 2. You may also sketch them if you like.

SOLUTION: Clockwise starting from upper right:1&) = @1(t) + @(t) = 2u(t) —
2u(t — 0.5) which is justgy(t) shifted up byl.

S(t) = @u(t) +0.5¢(t) = 1.5u(t) — u(t —0.5) — 0.5u(t — 1).
s3(t) = 0.5(@y(t) + @2(t)) which is just g(t) /2.
s(t) = 0.5@1(t) + @(t) = 1.5u(t) — 2u(t — 0.5) + 0.5u(t — 1) which is justgy(t) shifted
up by1/2
\

Figure 2: Signal points for Problem 5



