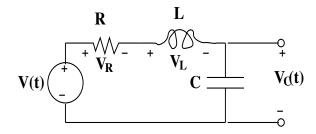
NAME:	LAB SECTION:

School of Engineering Department of Electrical and Computer Engineering

332:221


Principles of Electrical Engineering I

Fall 2012

Quizlette 8

USING A CALCULATOR WILL SLOW YOU DOWN! Final answers must appear in the appropriate box. Show your work outside the box.

1. **Basic Stuff:** The differential equation that relates V(t) to $V_C(t)$ is

$$V_C + LC\frac{d^2V_C}{dt^2} + RC\frac{dV_C}{dt} = V(t)$$

(a)	(2 pts)	What is th	e transfer	function	$H(j\omega)$	between input	V(t)) and o	output	$V_C(t)$)?
-----	---------	------------	------------	----------	--------------	---------------	------	---------	--------	----------	----

- (b) (2 pts) Suppose $V(t) = \cos t$ and all transients have died out of the circuit. Assuming R = C = L = 1 (in appropriate units), what is:
 - i. (1 pts) the phasor form of the transfer function value?

ii. $(1 pts) V_C(t)$?

2. Still Basic:

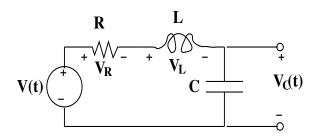


Figure 1:

(a) $(2 \ pt)$ Please derive the differential equation that relates input voltage V(t) to the current $I_L(t)$ through the inductor. (b) $(2 \ pts)$ What is the transfer function $H(j\omega)$ between input V(t) and output $I_L(t)$?

(c) $(1 \ pts)$ Suppose $V(t) = \cos t$ and all transients have died out of the circuit. Assuming R = C = L = 1 (in appropriate units), what is $I_L(t)$?