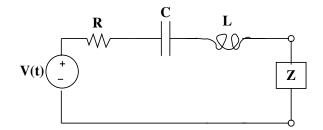
NAME:	LAB SECTION:	

School of Engineering Department of Electrical and Computer Engineering

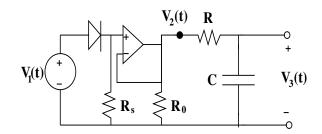
332:221


Principles of Electrical Engineering I

Fall 2012

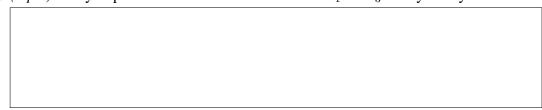
Quizlette 11

USING A CALCULATOR WILL SLOW YOU DOWN! Final answers must appear in the appropriate box. Show your work outside the box.


1. Basic Then ... Not Basic:

Assume sinusoidal steady state operation at some frequency ω .

(a)	(2pts) What value of Z maximizes the average power transfered to Z ?	
(b)	(3 pts) Suppose we require $Z = R_L$ to be real (i.e., just a regular old resistor).	What
	value of R_L maximizes power transfer into Z ?	


2. Your Cute Future: Consider the circuit shown in the figure.

(a) (1 pt) Assume the input voltage source amplitude is $V_1 = V_1$ where $V_1 \in \Re$ and that the frequency of operation is ω . Please provide a labeled sketch of $V_2(t)$.

(b) (1 pts) Can you provide a transfer function from V_1 to V_3 ? Why?/Why not?

(c) (1 pts) If $\omega=2\pi\cdot 60$ and $R=10k\Omega$, provide (and argue for) a value of C that makes $V_3(t)\approx V_1$? HINT: Remember that RC is called the "time constant" and is a measure of how quickly charge bleeds from a capacitor C through a resistor R.

(d) (2 pts) You are told that

$$V_2(t) = V_1 \sum_{k=-\infty}^{\infty} \frac{\cos \frac{k\pi}{2}}{\pi (1 - k^2)} e^{jk\omega t}$$

is the analytic form of what you SHOULD have sketched in the previous part :) :) . What is the output $V_3(t)$.