

School of Engineering Department of Electrical and Computer Engineering

332:221 Principles of Electrical Engineering I Ouizlette 11

Fall 2012

USING A CALCULATOR WILL SLOW YOU DOWN! Final answers must appear in the appropriate box. Show your work outside the box.

1. Basic Then ... Not Basic:

Assume sinusoidal steady state operation at some frequency ω .

(a) (2pts) What value of Z maximizes the average power transferred to Z?

$$Z = Z_{th}^* = R - Lj\omega - \frac{1}{Cj\omega}$$

(b) (3 pts) Suppose we require $Z = R_L$ to be real (i.e., just a regular old resistor). What value of R_L maximizes power transfer into Z?

Let
$$Z = R_L$$
 and $Z_{th} = R + jX$

$$\overline{P} = \frac{1}{2} |V|^2 \frac{R_L}{(R_L + R)^2 + X^2}$$

Differentiating and setting equal to zero gives

$$R_L = |Z_{th}|$$

- 2. Your Cute Future: Consider the circuit shown in the figure.
 - (a) (1 pt) Assume the input voltage source amplitude is $V_1 = V_1$ where $V_1 \in \Re$ and that the frequency of operation is ω . Please provide a labeled sketch of $V_2(t)$.

$$V_2(t) = V_1 \frac{\mathbf{sgn}(\cos\omega t) + 1}{2} \cos\omega t$$

(b) (1 pts) Can you provide a transfer function from V_1 to V_3 ? Why?/Why not?

Nope. The circuit is nonlinear.

(c) (1 pts) If $\omega = 2\pi \cdot 60$ and $R = 10k\Omega$, provide (and argue for) a value of C that makes $V_3(t) \approx V_1$? **HINT:** Remember that RC is called the "time constant" and is a measure of how quickly charge bleeds from a capacitor C through a resistor R.

We need $RC \gg 1/60$ so say RC = 1/6 or C = 1/60000whatever that is.

(d) (2 pts) You are told that

$$V_2(t) = V_1 \sum_{k=-\infty}^{\infty} \frac{\cos \frac{k\pi}{2}}{\pi (1-k^2)} e^{jk\omega t}$$

is the analytic form of what you SHOULD have sketched in the previous part :) :) . What is the output $V_3(t)$.

Superposition holds to the right of
$$V_2(t)$$
 so

$$V_3(t) = V_1 \sum_{k=-\infty}^{\infty} |H(jk\omega)| \frac{\cos \frac{k\pi}{2}}{\pi(1-k^2)} e^{jk\omega t + j \angle H(jk\omega)}$$
where $H(j\omega) = \frac{1}{RCj\omega+1}$