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Abstract—Performance of a L-branch predetection equal gain
combining receiver has been analyzed in independent Hoyt fading
channels with arbitrary fading parameters applying classical
probability density function (PDF) based approach. An approx-
imate but highly accurate PDF of the sum of independent Hoyt
random variables has been used for the analysis. Simple and
easy to evaluate expressions for the outage probability and
amount of fading have been obtained. An expression for average
symbol error rate, in the form of an infinite series with a
single integral with finite limits has been obtained which is
applicable for a number of M-ary coherent and noncoherent
modulations. Numerically evaluated results have been compared
with the published results to verify the correctness of the derived
expressions.

Index Terms- Diversity, Hoyt fading, equal gain combining,
average symbol error rate, PDF.

I. INTRODUCTION

Performance of a predetection equal gain combining (EGC)
diversity receiver in fading channels is known to be close to the
performance of the optimum maximal ratio combining (MRC)
receiver, with relatively less implementation complexity [1].
The performance analysis of a L-branch predetection EGC
receiver is not easy compared to MRC. The reason is due to the
age old problem of obtaining the probability density function
(PDF) of the sum of L fading envelopes, which is not known in
closed-form for L ≥ 3 [2]. This void eliminates the possibility
of applying the direct and simple PDF-based approach [1]
to the performance analysis of a predetection EGC receiver
beyond L = 2. Over the years, in an effort to obtain the per-
formance for L ≥ 3, the researchers have developed a number
of alternative approaches such as characteristic function (CF),
Parseval’s theorem method, Padé approximation etc. [2]-[6].
Recently, with an aim to generalize and obtain a better fit
for the experimental data, several new fading distributions
such as the κ-µ, η-κ and η-µ have been proposed [7]-[9].
Interestingly, in [7] an approximate but highly accurate PDF
of the sum of independent Hoyt random variables (RVs) has
been presented using moment based estimators. This useful

result can be readily applied to analyze the performance of
a L-branch predetection EGC receiver in independent Hoyt
fading channels using PDF-based approach.

In this paper, we analyze the performance of a L-branch
predetection EGC receiver in independent Hoyt fading chan-
nels with arbitrary fading parameters. Analytical expressions
for the outage probability and amount of fading (AF) and
average symbol error rate (ASER) for M-ary, coherent and
non-coherent modulation schemes have been obtained.

The paper is organized as follows. In Section II, we
introduce the channel and the receiver system model. The
performance analysis has been presented in Section III. In
Section IV, the numerical evaluation steps have been discussed.
Results and discussion have been presented in Section V.
Finally, we conclude the paper in Section VI.

II. CHANNEL AND RECEIVER

The channel has been assumed to be slow, frequency non-
selective, with Hoyt fading statistics. The complex low-pass
equivalent of the signal received at the lth input branch (1 ≤
l ≤ L) over one symbol duration Ts can be expressed as

rl(t) = αle jφl s(t)+nl(t), 0 ≤ t ≤ Ts, (1)

where s(t) is the transmitted symbol with energy Es and
nl(t) is the additive white Gaussian noise (AWGN) with two
sided power spectral density 2N0. The RV φl represents the
instantaneous phase of the signal received at the lth branch
and the RV αl is the fading amplitude assumed to be Hoyt
distributed whose PDF can be given by [2]

f (αl) =
2αl

Ωl

√

1−b2
l

exp
(

− α2
l

Ωl
(

1−b2
l
)

)

×I0

( b2
l α2

l
Ωl(1−b2

l )

)

, αl ≥ 0,−1 ≤ bl ≤ 1, (2)

where Ωl = E
[

α2
l
]

, bl is the fading severity parameter and Iν(·)
is the νth-order modified Bessel function of the first kind.

Assuming spatial diversity fading signals are available, a
predetection EGC receiver with the structure as shown in
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Fig. 1. Predetection EGC receiver

Fig. 1 has been used for receiving the signals. The receiver
consists of an L-branch predetection EGC combiner followed
by a detector. The L-branch predetection EGC combiner
cophases the received signals and produces at its output
the algebraic sum of these cophased signals. The detector
following the combiner is suitable for the detection of the
signal, corresponding to the modulation scheme employed at
the transmitter.

The received instantaneous SNR at the lth input branch of
the EGC combiner can be given by γl = Es

N0
α2

l , whose average
value is γ̄l = Es

N0
E
[

α2
l
]

= Es
N0

Ωl . Assuming ideal cophasing of
L signals in the EGC combiner, the instantaneous output SNR
of the predetection EGC receiver can be given by [2]

γo = (Es/LN0) (α1 +α2 + . . .+αL)
2 (3)

whose average value is γ̄0 = (Es/LN0)E[α2], where α = α1 +
α2 + . . . + αL. An useful expression for the PDF of α i.e.,
the sum of arbitrary number of independent Hoyt distributed
random variables has been presented in [7] using moment
based estimators which can be given as

pα(α) =
4
√

π
Γ(µ)

( µ
Ω

)µ+ 1
2
(

hα2)µ

Hµ− 1
2
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−2µhα2
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×Iµ− 1
2
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2µHα2

Ω

)

, (4)

where Ω = E
[

α2], h 4
=

(

2+η−1 +η
)

/4 and
H 4

=
(

η−1 −η
)

/4. The parameters Ω, η and µ in (4)
are required to be estimated for which the procedure is given
in the Appendix. From (3) and using the relation Ω = E

[

α2]

the average output SNR can be obtained as γ̄o = Es
LN0

Ω.
An expression for the PDF of γo i.e., pγo(γo) can be obtained

from (4), recognizing the relation between α and γ0 from
(3) (i.e., γo = Es

LN0
α2) and using standard formula for the

transformation of RVs. The authors in a recent publication
have presented this PDF which can be given as [10]

pγo(γo) =
2
√

πhµ
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)µ+ 1
2 (γo
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. (5)

Using (5) it is now convenient to analyze different performance
measures of a predetection EGC receiver in independent Hoyt
fading channels using the PDF-based approach.

III. PERFORMANCE ANALYSIS

A. Outage Probability
The outage probability Pout is a standard performance crite-

rion characteristic of diversity communication systems operat-
ing over fading channels [1]. It is defined as the probability that
γo falls below a specified threshold value γt . Mathematically,

Pout =

γt
Z

0

pγo (γo)dγo. (6)

For the predetection EGC receiver in independent Hoyt fading
channels, Pout can be obtained by substituting (5) into (6).
The integral in (6) can be solved by applying the identity [11,
(3.381.1)]]. After simplification the expression for Pout can be
given by

Pout =
21−2µ√π
hµΓ(µ)

∞

∑
k=0

( H
2h
)2k γ f

(

2µ+2k, 2µh
γ̄o

γt
)

k!Γ
(

µ+ k + 1
2
) , (7)

where γ f (·, ·) is the incomplete gamma function [11].

B. Amount of Fading
The AF is the measure of the severity of the fading channel

often appropriate in the more general context of describing
the behavior of diversity systems with arbitrary, combining
techniques and channel statistics [1]. It is defined as the
ratio of the variance to the mean square value of the output
instantaneous SNR γo. For predetection EGC receiver an
expression for AF can be given by using γo from (3) as

AF =
var(γo)

γ̄2
o

=
E
[

γ2
o
]

γ̄2
o

−1 =
E
[

α4]

Ω2 −1. (8)

Thus, AF can be obtained by evaluating E
[

α4] from (19) for
k = 4 and then putting it in (8). Alternatively, it can also be
evaluated by obtaining E

[

α4] directly from (4). The integration
involved can be solved using the identity [11, (3.381.4)]. The
final expression after simplification can be given as

AF =
µ+ 1

2
µhµ+2 3F1

(

µ+1,µ+
3
2 ,1;µ+

1
2;
[

H
h

)2
]

−1,(9)

where 3F1 (·, ·, ·; ·; ·) is the hypergeometric function. The above
expression converges fast since the magnitude of its argument
H
h < 1.

C. Average Symbol Error Rate
For a given modulation scheme, the ASER of any receiver

can be obtained by averaging the conditional SER P(ε|γ) over
the PDF of the receiver output SNR pγ(γ). It can be given by
[2]

Pe =

∞
Z

0

P(ε|γ) pγ(γ)dγ. (10)



TABLE I
PARAMETERS OF SEVERAL M-ARY MODULATION SCHEMES.

f (θ) = 1− cos(π/M)cos θ [2]

.
Modulation umax au (θ) β(θ) ηu

MPSK 1 1
π

sin2(π/M)

sin2 θ
π− π

M
MDPSK 1 sin(π/M)

π f (θ) f (θ) π/2

MQAM 2 −4
π

(

1√
M −1

)u 1.5
(M−1) sin2 θ

π/(2u)

MPAM 1 2
π (1− 1

M ) 3
(M2−1) sin2 θ

π/2
DEBPSK 2 2

π (−1)u−1 csc2 θ π/(2u)

For an M-ary modulation scheme, P(ε|γ) can be expressed in
a unified manner as [2]

P(ε|γ) =
umax

∑
u=1

ηu
Z

0

au(θ)e−γβ(θ)dθ, (11)

where au(θ), β(θ), ηu and umax are parameters of the mod-
ulation scheme. For a number of M-ary modulation schemes
these parameter values have been listed in Table I.

A general expression for the ASER can be obtained by
substituting (5) and (11) into (10) and solving the integral
w.r.t γo. The indefinite integral involved can be analytically
solved using the identity [11, (3.381.4)]. The final expression
can be given by

Pe =

(

2µ
√

h
γ̄o

)2µ ∞

∑
k=0

(

2µH
γ̄o

)2k (µ)k
k!

×
umax

∑
u=1

ηu
Z

0

au(θ)
(

2µh
γ̄o

+β(θ)
)2xk

dθ, (12)

where xk
4
= µ+ k and (µ)k is the Pochhammer’s symbol [2].

The above expression (12) for the ASER of a predetection
EGC receiver in Hoyt fading channels is useful for the
following two major reasons:

1) It can be used for any digital modulation scheme for
which the parameters au(θ), β(θ), ηu and umax are
known.

2) It is applicable for L-independent fading branches with
arbitrary fading parameters bl, l = 1,2 . . . ,L.

The above expression contains a single integral with finite lim-
its. Using the available software packages such as MATLAB
and MATHEMATICA etc. this evaluation can be performed
easily for a required degree of accuracy. It is also interesting to
note that for some particular cases, discussed below, the above
single definite integral can be analytically solved resulting in
simple algebraic expressions.

Below we present some particular cases of the modulation
schemes for which the above general expression (12) can be
simplified further.

1) M-ary Phase Shift Keying Modulation: Substituting the
parameters for MPSK modulation from Table I into (12), the
ASER expression can be expressed as

Pe,MPSK =
1
π

(
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√

h
γ̄o

)2µ ∞

∑
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. (13)

For the case of M = 2, i.e. for BPSK modulation, (13) can be
solved using the identities [11, (3.211), (8.384.1)] which after
further simplification can be given by

Pe,BPSK =
1

2Γ(µ)

(

µ
√

h
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where 2F1 (·, ·; ·; ·) is the Gaussian hypergeometric function
[11].

2) M-ary Differential Phase Shift Keying Modulation:
Substituting the parameters for MDPSK modulation from
Table I into (12), the corresponding ASER expression can be
given as

Pe,MDPSK =

(

2µ
√

h
γ̄o

)2µ ∞

∑
k=0

(µ)k
k!

π/2
Z

0

dθ

f (θ)
[

2µh
γ̄o

+ f (θ)
]2xk

,

(15)

where f (θ) is defined in Table I.
For the case of M = 2, i.e. for binary DPSK modulation,

(15) can be solved using the identities [11, (3.211),(8.384.1)]
and the resulting simplified expression can be given by

Pe,DPSK =

(

2µ
√

h
γ̄o −2µh

)2µ ∞

∑
k=0

(

2µH
γ̄o −2µh

)2k (µ)k
k! (16)

IV. NUMERICAL EVALUATION

Analytical expressions for Pout (7), AF (8) and ASER (13)-
(16) have been numerically evaluated. For the purpose of
simplification of evaluation, without loss of generality, we have
assumed Ωl |Ll=1 = 1. This enables us to express γ̄l = Es/N0
which is convenient for all evaluations. The value of fading
parameter has been assumed to be identical for all branches
i.e. b1 = b2 = . . . = bL = b. The outage probability Pout has
been evaluated as a function of the ratio γ̄1/γt by expressing
γ̄o/γt = (γ̄1/γt)(Ω/L) in (7). The value of Ω for any L can be
obtained by evaluating (19) for k = 2. For unequal branch SNR
case, an exponentially decaying power delay profile given by
Ωl = Ω1e−δ(l−1),0 ≤ δ ≤ 1, has been assumed [1]. Evaluation
of each expression requires the values of H and h which can
be obtained by first obtaining the values of η and µ from (17)-
(20) in the Appendix and then substituting them into (4). In
the evaluation of the expressions involving infinite series, 20
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Fig. 2. Outage probability Pout vs. γ̄1/γt for different L and b.

terms have been found to be sufficient for an accuracy at least
up to 7th place of decimal digit.

V. RESULTS AND DISCUSSION

In Fig. 2 Pout versus γ̄1/γt has been plotted for different
values of L and b. It can be observed from this figure that Pout
decreases from a maximum value of unity to very small values
with increase in the ratio γ̄1/γt . This implies that the outage,
for a fixed γ̄1, varies directly with γt , which is intuitively
satisfying. It can also be observed that for a fixed γt , Pout
reduces with increase in L. It is due to the reason that including
more number of branches improves γ̄o resulting in less outage.
Further, it can be noted that for a given L, Pout varies directly
with b, as expected. The outage probability results obtained
here have been compared with the published results in [5,
Fig. 5, L = 2,3] and found to be matching closely. AF versus
channel parameter b has been plotted for different values of
L in Fig. 3. From the curves shown, it can be inferred that
the severity of fading increases with increase in the fading
parameter b and decreases with increase in L.

ASER versus SNR Es/N0 per branch has been plotted for
MPSK and MDPSK modulations in Figs. 4 and 5, respectively.
Curves for ASER have been shown for L = 2,3 and 6, each
one for M = 2,4 and 8. The value of b has been taken to
be 0.5 in these plots. The common observation is that the
ASER decreases with increase in Es/N0 and L whereas it
increases with increase in M, which is as expected. It is
important to observe the low SNR region of these plots where
the curves are either crossing each other or overlapping. This
indicates that in this region of SNR the ASER of the receiver
is almost independent of M and L. This gives an option to
choose a less complex modulation scheme and/or less number
of branches when receivers are likely to operate in low SNR
environments. The plotted results have been compared with
the matching cases in [5, Figs. 4(a) and 4(b)] and found to
be matching closely. This observation validates the accuracy
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of our derivations. ASER versus Es/N0 for unequal branch
SNRs and arbitrary fading parameters bl has been shown in
Fig. 6. For the purpose of illustration, curves have been shown
for L = 3 and 5 each one for δ = 0,0.5 and 1 for 4PSK
modulation. For each L, we have arbitrarily taken b1 = 0.3 and
bl = b1 +0.1, 2≤ l ≤ L. The observations from these plots can
be explained in the manner similar to that presented for equal
branch SNR case.

VI. CONCLUSION

In this paper, we have analyzed the performance of a L-
branch predetection EGC diversity receiver in independent
Hoyt fading channels, with non-identical and arbitrary fading
parameters, applying the PDF based approach. Using an
approximate but highly accurate expression for the PDF of
the sum of independent Hoyt RVs, expressions for the outage
probability, amount of fading and ASER have been obtained.
The ASER expression is in the form of an infinite series
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with a single integral having finite limits and is applicable for
a number of coherent and noncoherent modulation schemes.
For the purpose of illustration, simplified expressions for the
MPSK and MDPSK modulations have also been given. For
binary modulation cases, these finite integral expressions have
been solved to the expressions containing elementary and
special mathematical functions. Numerically evaluated results
have been plotted and compared with the particular cases of
the published results to check the correctness of the obtained
analytical expressions.

APPENDIX
ESTIMATORS FOR HOYT RANDOM VARIABLES

The expressions to obtain parameters Ω, η and µ are
reproduced below from [7]:

η1,2 =

√
2c−

√

3−2c±
√

9−8c
√

2c+
√

3−2c±
√

9−8c
, (17)

µ1,2 =
Ω2

E [α4]−Ω2
1+η2

1,2

(1+η1,2)
2 , (18)

where Ω = E
[

α2] and c 4
=

E[α6]
Ω3 −

3E[α4]
Ω2 +2

2

(

E[α4]
Ω2 −1

)2 . From (17) and

(18) two pairs of η and µ are possible i.e. (ηi,µi), i = 1,2.
The appropriate pair is the one for which the deviation
|E [α]−E [α]i| , i = 1,2 is the smallest.

The formula to obtain the moments of α is given as below:

E
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αk
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. . .
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The kth moment of Hoyt summand αl is given by

E
[

αk
l

]

=
(

1−b2
l
)

1+k
2 Γ

(

1+
k
2

)

Ωk/2
l 2F1

(

1+
k
4 ,

1
2 +

k
4 ;1;b2

l
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. (20)
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